
Computers in Human Behavior 109 (2020) 106349

Available online 27 March 2020
0747-5632/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Full length article

A meta-analysis of teaching and learning computer programming: Effective
instructional approaches and conditions

Ronny Scherer a,*, Fazilat Siddiq b, B�arbara S�anchez Viveros c

a Centre for Educational Measurement at the University of Oslo (CEMO), Faculty of Educational Sciences, University of Oslo, Norway
b Department of Education and Quality in Learning, University of South-Eastern Norway(USEN), Norway
c Faculty of Life Sciences, Humboldt-Universit€at zu Berlin, Germany

A R T I C L E I N F O

Keywords:
Computational thinking
Computer programming
Intervention studies
Multilevel meta-analysis
Scratch programming

A B S T R A C T

This meta-analysis maps the evidence on the effectiveness of instructional approaches and conditions for learning
computer programming under three study conditions: (a) Studies focusing on the effectiveness of programming
interventions per se, (b) studies focusing on the effectiveness of visualization and physicality, and (c) studies
focusing on the effectiveness of dominant instructional approaches. Utilizing the data from 139 interventions and
375 effect sizes, we found (a) a strong effect of learning computer programming per se (Hedges’ g ¼ 0.81, 95% CI
[0.42, 1.21]), (b) moderate to large effect sizes of visualization (g ¼ 0.44, 95% CI [0.29, 0.58]) and physicality
interventions (g ¼ 0.72, 95% CI [0.23, 1.21]), and (c) moderate to large effect sizes for studies focusing on
dominant instructional approaches (gs ¼ 0.49–1.02). Moderator analyses indicated that the effect sizes differed
only marginally between the instructional approaches and conditions—however, collaboration in metacognition
instruction, problem solving instruction outside of regular lessons, short-term interventions focusing on physi
cality, and interventions focusing on visualization through Scratch were especially effective. Our meta-analysis
synthesizes the existing research evidence on the effectiveness of computer programming instruction and, ulti
mately, provides references with which the effects of future studies could be compared.

1. Introduction

Computer programming has regained considerable attention over
the last decade, not only because of the rapid technological de
velopments but also because it is claimed to foster other skills, including
problem solving, logical thinking, and creativity (Liao & Bright, 1991;
Scherer, 2016). Moreover, educational systems around the world are in
the process of developing curricula that implement programming and
so-called computational thinking—a concept that contextualizes com
puter programming and related skills as a form of problem solving
(Shute, Sun, & Asbell-Clark, 2017)—either as a standalone subject or
integrated in other subjects (European Commission, 2016; Yadav, Good,
Voogt, & Fisser, 2017). Whereas the importance of computer program
ming has been widely recognized, the systematic evaluation of the
effectiveness of instructional approaches and conditions fostering the
acquisition of programming knowledge and skills has received little
attention (Grover & Pea, 2013; Lye & Koh, 2014).

Besides, the existing body of literature abounds in diverse instruc

tional approaches, focusing on the use of specific programming tools
(Fl�orez et al., 2017), ways to facilitate the understanding of computa
tional concepts and the acquisition of information processing along with
metacognitive skills (Lye & Koh, 2014), the benefits of pair program
ming over individual programming (Umapathy & Ritzhaupt, 2017), and
the setup of programming courses, including the effects of blended and
project-based learning (Hsu, Chang, & Hung, 2018; Vihavainen, Air
aksinen, & Watson, 2014)—just to name a few. These different foci have
inevitably led to diverse findings concerning the effectiveness of certain
instructional approaches and conditions. For instance, whereas Lou,
Abrami, and d’Apollonia (2001) found weak effects of collaborative
learning with technology, including computer programming, on indi
vidual and group performance (Cohen’s d ¼ 0.15–0.31), Umapathy and
Ritzhaupt (2017) identified moderate to strong effects (Hedges’ g ¼
0.41–0.64). Moreover, whereas Yüksel and Yüksel (2015) obtained
strong effects of teaching programming through problem solving (g >
1.00), Denny, Cukierman, and Bhaskar (2015) testified to only small
effects (g ¼ 0.27). The list of studies and diverse findings could be

* Corresponding author. Faculty of Educational Sciences, Centre for Educational Measurement at the University of Oslo (CEMO), Postbox 1161 Blindern, NO-0318,
Oslo, Norway.

E-mail address: ronny.scherer@cemo.uio.no (R. Scherer).

Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: http://www.elsevier.com/locate/comphumbeh

https://doi.org/10.1016/j.chb.2020.106349
Received 9 October 2019; Received in revised form 20 January 2020; Accepted 15 March 2020

mailto:ronny.scherer@cemo.uio.no
www.sciencedirect.com/science/journal/07475632
https://http://www.elsevier.com/locate/comphumbeh
https://doi.org/10.1016/j.chb.2020.106349
https://doi.org/10.1016/j.chb.2020.106349
https://doi.org/10.1016/j.chb.2020.106349
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chb.2020.106349&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers in Human Behavior 109 (2020) 106349

2

extended easily—overall, these examples suggest that the effectiveness
of programming instruction varies considerably across studies.

With more computer science educators interested in making pro
gramming accessible to young students, learning programming through
game design, robotics, and with visual instead of text-based languages is
expected to be more effective than other approaches (e.g., Batista,
Connolly, & Angotti, 2016; Lee, Mauriello, Ahn, & Bederson, 2014; Lye
& Koh, 2014). However, the existing body of research has not yet pro
vided sufficient evidence supporting these expectations (Fl�orez et al.,
2017; Scherer, 2016). So, what are effective approaches and conditions
for teaching and learning computer programming? This meta-analysis is
aimed at providing some answers to this question by synthesizing the
evidence from experimental and quasi-experimental studies targeted at
improving students’ programming knowledge and skills. Specifically,
using the framework for reviewing the effectiveness of educational
technology proposed by Chen, Wang, Kirschner, and Tsai (2018), we
distinguish between three categories of primary studies to examine three
aspects of effectiveness and ultimately map the field of programming
instruction (Fig. 1): (a) Studies that reported the effectiveness of
learning computer programming per se (i.e., with control groups that
did not engage in any programming activity), (b) Studies that reported
the effectiveness of visualization and physicality during programming (e.
g., visual programming languages such as Scratch, involvement of ro
botics), and (c) Studies that reported the effectiveness of dominant
instructional approaches (e.g., programming instruction focusing on
metacognition, game-based learning, collaboration, feedback). For these
three categories, we estimate the overall intervention effect sizes on
performance-based outcome variables—that is, measures of program
ming knowledge and skills—through multiple, separate meta-analyses
and quantify the variation of effects within and across studies. Further
moderator analyses are conducted to explain this variation by contex
tual variables. Overall, our research synthesis provides information
about whether instructional approaches and conditions have fulfilled
the expectations associated with their effectiveness for learning com
puter programming.

1.1. Anchoring computer programming in the concept of computational
thinking

Computer programming is defined as the “process of developing and
implementing various sets of instructions to enable a computer to
perform a certain task, solve problems, and provide human inter
activity” (Balanskat & Engelhardt, 2015, p. 7). Thus, in addition to
having knowledge of programming languages, expertise in subjects
related to the development of specialized algorithms and logic, and the

ability to analyze, understand, and solve problems in an iterative process
are required (Forsstr€om & Kaufmann, 2018). The processes involved in
programming are therefore largely similar to those involved in
problem-solving, such as decomposing problems, applying algorithms,
abstracting, and automatizing (Shute, Sun, & Asbell-Clarke, 2017;
Yadav et al., 2017).

In their seminal review, Lye and Koh (2014) argued that computer
programming “exposes students to computational thinking which in
volves problem-solving using computer science concepts like abstraction
and decomposition.” (p. 51). Ultimately, the authors concluded that
fostering the skills involved in programming will also enhance the skills
involved in computational thinking. Despite its criticism (Denning,
2017), the concept of computational thinking has found its way in
existing computer science curricula, teacher education programs, and
research agendas (Grover & Pea, 2013). Wing (2006) broadly defined
computational thinking as a concept that “involves solving problems,
designing systems, and understanding human behavior, by drawing on
the concepts fundamental to computer science” (p. 33). Drawing on this
definition and subsequent specifications of the very concepts that are
‘fundamental to computer science”, Shute et al. (2017) named the key
processes involved in computational thinking—problem (re-)formula
tion, recursion, decomposition, abstraction, and systematic testing of
solutions and procedures. In light of these processes, the authors argued
that computational thinking can be considered a form of problem
solving in technology-rich contexts.

Although the processes involved and the skills required in computer
programming are those involved and required in computational
thinking (Lye & Koh, 2014), the latter involves more than programming.
In their influential framework, Brennan and Resnick (2012) outlined
three key areas of computational thinking: Computational concepts (i.e.,
concepts used by programmers, such as sequences and loops), compu
tational practices (i.e., problem-solving processes during programming,
such as testing and debugging), and computational perspectives (i.e.,
students’ understanding of themselves and their interaction with others
and with technology, such as questioning technology as a means to solve
real-life problems). Whereas computational concepts and practices play
a critical role in programming, the latter—taking computational per
spectives as a way to computational participation—represents a dis
tinguishing feature of computational thinking (Kafai & Burke, 2013;
Shute et al., 2017). Programming is considered a way of teaching and
learning computational thinking—in other words, learning to program a
computer can ultimately aid the acquisition of computational thinking
skills (Fl�orez et al., 2017).

Given the limited focus of intervention studies on computational
perspectives (Lye & Koh, 2014), the current series of meta-analysis

Fig. 1. Conceptual framework of the present meta-analysis.

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

3

focuses on the computational concepts and practices, labelled as pro
gramming knowledge and skills. Programming knowledge, in this
respect, comprises the conceptual and procedural knowledge needed to
solve problems computationally (i.e., syntactic, semantic, schematic,
and strategic knowledge). Programming skills comprise the skills to
create, modify, and evaluate computer code.

1.2. Approaches and conditions of computer programming instruction

In their recent article, Brown and Wilson (2018) reviewed the role of
computer programming for computational biology and concluded that,
in light of the extant literature on programming instruction, “compe
tence at programming is not innate but is rather a learned skill that can
be acquired and improved with practice” (p. 1). Based on this assump
tion that programming knowledge and skills can be taught effectively,
several instructional approaches have been proposed and evaluated over
the last decades—yet, with varying foci and degrees of success (Grover &
Pea, 2013; Robins, Rountree, & Rountree, 2003).

In the early studies from the 1980s and 1990s, programming in
struction with the Logo language was in the main focus. After a myriad
of experimental and quasi-experimental studies had been conducted, the
evidence base on the effectiveness of different instructional approaches
was diverse. Whereas some studies found teacher-directed instruction to
be more effective than discovery learning (Lee, 1991), others found the
opposite effect (see Clements, 1995 for an overview). Palumbo (1990)
consequently argued that key study design features, such as the type of
programming language and the length of the intervention, should be
considered to explain these varying effects. The context and tool
dependence of effective programming instruction seems evident.

Reviewing the existing literature on K-12 computing education for
the newer studies, Garneli, Giannakos, and Chorianopoulos (2015)
highlighted several focus areas intervention studies have engaged
in—these areas included examining the importance of programming
tools, educational contexts, and instructional methods. The authors also
emphasized the growing popularity of game design and robotics in
struction, project-based interventions, and interventions that involve
collaboration and the use of physical objects to determine the outcome
of certain programming tasks. Garneli et al. (2015) concluded that
implementing computing education in K-12 instruction can be “enjoy
able and effective”—however, empirical evidence supporting these ex
pectations is still scarce (Grover & Pea, 2013; Scherer, 2016). Lye and
Koh (2014) consequently called for exploring more classroom in
terventions of computer programming to enrich the existing knowledge
base of ‘what works and what doesn’t’. Reviewing the effectiveness of
teaching introductory programming for course pass rates, Vihavainen
et al. (2014) identified core intervention programs. These programs
included collaboration and peer support, relatable content and contex
tualization, assessment procedures, course setup, and resourcing. The
authors synthesized the effect sizes resulting from intervention studies
that focused on at least one of these programs and found an overall
positive effect suggesting that pass rates could be improved up to 40%
compared to traditional lecture- and lab-based courses. At the same
time, Vihavainen et al. (2014) acknowledged that these improvements
vary across instructional approaches and that a combination of multiple
approaches may be most effective for teaching programming. Fl�orez
et al. (2017) concurred with this conclusion and further pointed out the
importance of collaboration and peer support as well as the use of
visualization tools to help students develop and explicate their mental
models about programming concepts. Next to these trends in interven
tion studies to foster the teaching and learning of computer program
ming, several other programs exist, which focus, for instance, on the
benefits of blended learning over face-to-face learning, the effectiveness
of problem-solving instruction, feedback, and the fostering of meta
cognitive skills (for an overview and example studies, please refer to
Table 2).

Overall, our review of the extant literature revealed that (a) diverse

instructional approaches to fostering computer programming exist; (b)
several intervention programs are effective in fostering programming
knowledge and skills; (c) the effectiveness of intervention programs may
vary across studies and instructional conditions (see also Li & Ma, 2010).
In fact, existing studies indicated that the effectiveness of programming
interventions depend on the context they are placed in. Kafai and Burke
(2015), for example, noted the relevance of the intervention length that
may range between some hours and several months and the integration
of the intervention in short-term coding camps, extracurricular activ
ities, or regular school lessons. Despite this diversity, some core pro
grams seem to reoccur, such as the effectiveness of certain programming
tools and collaboration (Hsu et al., 2018).

Visual programming tools. A considerable number of studies
focused on the effectiveness of certain programming tools over alter
native tools. For instance, Lee (1990), in an early meta-analysis, found
that programming with the Logo software was significantly more
effective than with the Basic software. Later on, Au (1992) confirmed
this finding using problem-solving transfer tests as outcome measures. In
the same study, the ways in which the Logo programming instruction
was integrated (process-vs. content-oriented) moderated the overall ef
fect size. Similarly, some evidence from the early studies exists that the
superior effectiveness of the programming language Logo over Pascal
and BASIC depended on the instructional approach (see also Lee, 1991).
Liao and Bright (1991) summarized the primary programming studies
and confirmed that some programming languages are more effective in
fostering the transfer of programming skills than others—an observation
that was also made for modern languages. Specifically, Costa and
Miranda (2017) meta-analyzed intervention studies of the effectiveness
of learning programming with the language Alice. The authors identified
six eligible studies and found an overall, positive, and moderate effect on
programming performance, d ¼ 0.54, 95% CI [0.34, 0.74]. Costa and
Miranda concluded that Alice is an effective software to learn pro
gramming, yet they could not explain the variation of the intervention
effect across studies. Furthermore, Moreno-Le�on and Robles (2016)
reviewed studies that used the visual programming language Scratch
mainly in the contexts of game design and storytelling. The authors
found support for the overall effectiveness of teaching with Scratch for
improving students’ attitudes toward programming and their program
ming performance; however, given the limited number of actual (quasi-)
experimental studies, these effects could not be synthesized
meta-analytically.

One of the main reasons for the hypothesized superiority of some
programming languages over others lies in their visual nature which
may make programming more accessible to students than text-based
languages and thus more effective (Grover & Pea, 2013). In fact, some
evidence suggests that additional visualizations, such as concept maps,
may elevate these effects (Fl�orez et al., 2017). Especially with the
development of the Scratch and Logo languages, computer science ed
ucators are hoping to teach students programming already in primary
school and kindergarten. As early as the 1990s, customizing program
ming tools and languages for certain age groups of students, especially
for younger students, is considered an integral part of developing pro
gramming instruction (Clements & Sarama, 1997).

Overall, what this brief review of the extant literature indicates is
that programming interventions may be differentially effective across
different programming languages, favoring visualization-based instruc
tion and visual languages.

Collaboration. Another, substantial set of intervention studies
focused on the effects of learning programming collaboratively, for
instance, by pair programming. Lou et al. (2001) meta-analyzed the
overall effects of learning with technology collaboratively in comparison
to individual learning. The authors identified weak yet significant and
positive effects on individual and group performance (d ¼ 0.15–0.31).
Later, Umapathy and Ritzhaupt (2017) reviewed 28 effect sizes reported
in 18 primary studies and found moderate to strong effects of pair

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

4

programming on performance in programming exams and assignments
(g ¼ 0.41–0.64)—these effects varied significantly across studies. Brown
and Wilson (2018) consequently encouraged lecturers of computer
programming to consider collaboration a key element in their instruc
tion. Peer support and collaborative problem solving seem to be espe
cially effective in stimulating computational thinking as they allow
students to resolve immediate inquiries more rapidly than working
individually (Fl�orez et al., 2017). Although this evidence base largely
supports the effectiveness of collaborative practices, some evidence
suggests that the effects may between domains, gender, and the
composition of the samples (Springer, Stanne, & Donovan, 1999).

Game design and physicality. Trying to make programming more
accessible to younger students, researchers and computer science edu
cators have contextualized programming instruction in the design of
games and the use of robots (Lee et al., 2014). Behind this contextuali
zation lies the expectation that both game design and robotics will not
only facilitate the understanding of computational concepts more than
alternative approaches but will engage students more effectively in
collaboration (Batista et al., 2016). In Lee’s (1990) early review, simu
lation- and game-based interventions were indeed most beneficial to
higher-grade students’ learning of computer programming. Concerning
the interventions involving robotics (e.g., Lego Mindstorms®), Lito
(2017) meta-analyzed the available effect sizes and found a strong
positive and statistically significant effect size, d ¼ 0.70, 95% CI [0.28,
1.11], k ¼ 12. One may argue that both designing games and pro
gramming robots are especially effective for teaching and learning
programming, because they shift the focus from creating the code to the
applications and the ‘making’ of creative products (Kafai & Burke,
2013). Moreover, the code students develop can be tested directly, and
immanent feedback is accessible by observing, for instance, the move
ments of a programmed robot. Liu, Schunn, Flot, and Shoop (2013)
supported the argument for involving physicality in programming in
terventions and provided some empirical evidence that physical pro
gramming environments may impact positively students’ algorithmic
thinking.

Creating games through programming may not only increase stu
dents’ motivation to engage in programming and acquire the required
technical skills but also create opportunities for collaborative learning
experiences (Kafai & Burke, 2015). These approaches, however, still
have to deliver on their promises by providing a sufficiently large body
of evidence for their effectiveness (Fl�orez et al., 2017). The present
meta-analysis examines some aspects of this evidence base.

1.3. Framework for the present meta-analysis

To synthesize the research evidence on the effectiveness of instruc
tional approaches and conditions for the learning of computer

programming, we drew from Chen et al. (2018) framework of three
study conditions: (a) the effectiveness of technology interventions per
se, (b) the effectiveness of features of the learning environments or tools,
and (c) the effectiveness of instructional approaches. This framework
was informed by Mayer’s (2015) taxonomy of organizing the research
evidence surrounding digital game-based learning and was also adopted
in a recent meta-analysis by Tsai and Tsai (2018). In essence, it repre
sents a way of categorizing primary studies into three conditions in order
to shed light on the effectiveness of technology-based interventions from
multiple perspectives rather than from a single perspective. Chen et al.
(2018) consider this multi-perspective approach to be especially useful
for organizing and mapping domains and study contexts with a variety
of research foci and approaches. At the same time, this framework faces
two challenges: First, given the different study conditions, separate
meta-analyses must be performed to synthesize the evidence within each
condition—this may, however, limit the number of studies available and
ultimately reduce the power to detect small effect sizes. Second, the first
condition (1) focuses on the effects of technology-based interventions
per se. While these effects may not have specific and direct implications
for instruction, they provide references against which the effects derived
from conditions (2) and (3) could be compared.

Transferring this framework to the context of computer program
ming instruction, we distinguish between three study conditions: (1)
Studies that reported the effects of programming instruction per se, which
allowed us to compare the effects of programming instruction with in
struction outside the programming domain; (2) Studies that reported the
effects of visualization and physicality; (3) Studies that reported the ef
fects of instructional approaches. Fig. 1 depicts these three conditions and
the overall framework of this meta-analysis, and Table 1 clarifies the
study designs underlying these conditions, which will be discussed in
more detail in the method section of this paper.

1.4. The present meta-analysis

The present meta-analysis synthesized the evidence surrounding the
effectiveness of instructional approaches and conditions for learning
computer programming and tested some of the claims surrounding the
effectiveness of certain instructional conditions. The main contribution
of this study consequently lies in generating knowledge about what may
or may not work well in computer programming instruction and
whether new programming tools and ways of instruction can deliver on
their promises. We synthesized the evidence within the three conditions
(Fig. 1), addressing the following three research questions (RQs):

RQ1. To what extent are computer programming interventions
effective in fostering students’ programming knowledge and skills?
(Effectiveness of programming interventions per se).

RQ2. (a) To what extent are interventions focusing on visualization

Table 1
Overview of the study conditions (a) to (c).

Study condition Experimental group Control group Examples

(a) Effectiveness of
programming
interventions per se

Instruction with computer programming Instruction without any computer
programming

� Learning mathematics with Logo vs. learning
mathematics without programming

� Problem-solving instruction with programming vs.
without programming

(b) Effectiveness of
visualization or
physicality

Instruction with visual (programming)
tools or physical implementations of code
(e.g., through robots)

Instruction without the visual (programming)
tools or physical implementations of code (e.
g., through robots)

� Programming instruction with Java vs.
programming instruction with Scratch

� Programming with a text-based language and visu
alizations vs. programming with only the text-based
language

� Programming instruction with vs. without robotics
(e.g., Lego Mindstorms®)

(c) Effectiveness of
instructional approaches

Programming instruction with specific
instructional approaches

Programming with conventional instruction � Pair programming vs. individual programming
� Programming instruction with Logo and

metacognitive reflections vs. programming
instruction with Logo without metacognitive
reflections

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

5

effective in fostering students’ programming knowledge and skills? (b)
To what extent are interventions focusing on physicality effective in
fostering students’ programming knowledge and skills? (Effectiveness of
visualization and physicality).

RQ3. To what extent are the following instructional approaches to
teaching computer programming effective in fostering students’ pro
gramming knowledge and skills: (a) Blended learning, (b) Collaboration,
(c) Feedback, (d) Game-based learning, (e) Metacognition, and (f)
Problem solving? (Effectiveness of instructional approaches).

Besides synthesizing the effect sizes within these conditions, we also
quantify their variation within and between studies and examine which
study, sample, and publication features may explain this variation
(Moderator analyses). To our best knowledge, this meta-analysis is the
first to quantify the effectiveness of a broad range of intervention pro
grams and to examine possible moderation effects after the publication
of Lee’s (1990) meta-analysis. Examining the intervention effects across
the three conditions through separate meta-analyses provides informa
tion about the malleability of programming knowledge and skills from
multiple perspectives and maps the field of programming instruction by
providing some references against which researchers can evaluate their
instructional interventions.

2. Method

We based this set of meta-analyses on a systematic review of the
primary literature and followed certain steps to identify and extract the
relevant information from the primary studies (Card, 2012). These steps
included an extensive literature search, the screening of potential pub
lications, and the extraction and coding of relevant information reported
in eligible publications. Finally, we performed statistical analyses to
synthesize the evidence surrounding the effectiveness of programming
instruction.

2.1. Literature search

We extracted the literature relevant to the effectiveness of pro
gramming interventions from multiple sources (see Fig. 2): (a) Main
databases in the field (ACM Digital Library, IEEE Xplore Digital Library,
ERIC, PsycINFO, and Learn Tech Library) and supplementary databases
(ProQuest Dissertations and Theses Database, Google Scholar,1 and
ResearchGate); (b) Academic journals (e.g., Computers & Education,
Journal of Educational Computing Research); (c) Reference lists of
previous meta-analyses and review articles (e.g., Liao & Bright, 1991;
Grover & Pea, 2013; for a detailed reference list, please refer to Sup
plementary Material S2); (d) Vitae of scholars who have published
studies or reviews in the field of computer science education with a focus
on programming (e.g., Douglas Clements); and (e) Inquiries concerning
unpublished studies via email. Our search included publications that
were published between January 1, 1965 and January 31, 2017. We
used the following search terms: (Programming OR coding OR code OR
Scratch* OR Logo* OR Mindstorm* OR computing OR computational
thinking) AND (teach* OR learn* OR educat* OR student* OR inter
vention OR training) AND Computer* AND (compar* OR control group*
or experimental group* OR treatment). This set of search terms was
comprised of four key elements: The first represented the context of
computer programming and included some alternative terms used in the
extant literature, such as coding or computational thinking. To capture
studies that may not have used one of these terms in their titles, ab
stracts, or keyword lists, we further added the names of prominent

computer programming languages, such as Logo and Scratch—this
strategy was recommended by Scherer, Siddiq, and S�anchez Viveros
(2019) in their recent meta-analysis. The former was especially impor
tant for identifying studies that were conducted in the 1980s and 1990s.
The second set of terms defined the context and type of studies and was
used to identify interventions that focused on fostering computer pro
gramming skills. The third search term defined the technology used to
foster programming. Finally, the fourth set of search terms specified the
design of the studies, that is, an experimental or quasi-experimental
design that included a control and a treatment group. Overall, the four
categories of search terms essentially defined the key constructs, the
educational context, technology, and the design of the primary studies.
These categories are considered essential in meta-analyses of
technology-based interventions (e.g., Bernard, Borokhovski, Schmid,
Tamim, & Abrami, 2014; Chauhan, 2017). In case Boolean search
mechanisms were not available, we had to modify these groups of search
terms. Supplementary Material S2 contains the full list of searches in the
databases, including the details about necessary adaptations. The search
for relevant literature yielded 5193 publications which were submitted
to further screening (see Fig. 2).

2.2. Screening and eligibility criteria

After removing duplicates, we screened the titles and abstracts of
708 publications for (a) their relevance for examining the effectiveness
of interventions of computer programming; (b) the presence of an
intervention; (c) their quantitative nature; (d) English as their language
of reporting (see Fig. 2). This initial screening resulted in 440 publica
tions, which were further submitted to the screening of full texts.

One of the key criteria we applied to screen publications referred to
the design of the primary studies—we only included studies which
contained at least one control group and which followed either an
experimental or a quasi-experimental design (i.e., posttest-only or
pretest-posttest designs). Hence, we excluded pre-experimental designs
which did not include any control groups. Besides, studies were
excluded if (a) full texts or secondary sources containing sufficient in
formation about the interventions were not available; (b) the results of
the interventions were not reported sufficiently; (c) outcome measures

Table 2
Instructional approaches to fostering programming skills.

Instructional
approach

Example intervention(s) Example reference(s)

Blended
learning

Blended learning compared to
face-to-face instruction of
computer programming

Grover, Pea, and Cooper
(2015); Olelewe and
Agomuo (2016)

Collaboration Teaching programming
collaboratively vs. individually

Jehng and Chan (1998); Lai
& Xin (2011)

Feedback Continuous feedback on
students’ programming
performance, feedback in
structured teaching
environments

Chao (1999); Johnson and
Kane (1992)

Game-based
learning

Game-based instruction of
object-oriented programming,
game development in Scratch

Cetin (2016); Rodríguez
Corral, Civit Balcells,
Morgado Est�evez, Jim�enez
Moreno, and Ferreiro Ramos
(2014)

Metacognition Reflecting on problem-solving
approaches, fostering
metacognitive strategies

Lehrer, Lee, and Jeong
(1999); Volet and Lund
(1994)

Problem solving Discovery learning vs. teacher-
directed learning, teaching
specific problem-solving
methods and strategies

Suomala and Alajaaski
(2002); Uysal (2014)

Others Unidirectional vs. reciprocal
teaching

Liu et al. (2013); Shadiev
et al. (2014)

Note. Please find a more detailed description of the instructional approaches in
the Supplementary Material S1.

1 Given the limited options Google Scholar provides to conduct a systematic
literature search based on standardized search terms (Atkinson & Cipriani,
2018) and the hard-to-manage number of search results (>1.7 million), we
extracted only the first 100 entries (see Haddaway, Collins, Coughlin, & Kirk,
2015) and screened them.

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

6

were not based on performance assessments of programming skills; (d)
interventions were conducted outside of educational contexts in which
students received an instruction (e.g., studies in which students learned
computer programming autodidactically without any teaching stim
ulus); (e) clinical or special needs samples were included; (f) control and
treatment groups differed in their grade levels (see Fig. 2). We double-

screened 20% of all eligible full texts to ensure the reliability of our
inclusion/exclusion criteria. The resultant interrater agreement was
high, weighted κ ¼ 0.97. Any disagreement was resolved by discussing
and reviewing specific cases. Overall, the screening of full texts yielded
139 eligible studies that provided 375 effect sizes. Supplementary Ma
terial S1 contains the full set of effect sizes; Supplementary Material S2

Fig. 2. Flow diagram describing the literature search and the selection of eligible training studies (adapted from the PRISMA Statement; Moher, Liberati, Tetzlaff,
Altman, & The PRISMA Group, 2009).

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

7

contains the corresponding reference list.

2.3. Effect size measures

Effect sizes were extracted directly from the primary studies or
calculated based on the reported statistics. For pretest-posttest designs
with a treatment group (T) and a control group (C), we calculated
Hedges’ g from the standardized mean difference ES as follows (Lipsey &
Wilson, 2001):

ES¼
ðXT;Post � XT;PreÞ � ðXC;Post � XC;PreÞ

SDPooled

XT;Pre and XT;Post represent the pretest and posttest mean scores of the
treatment, and XC;Pre and XC;Post of the control group, respectively. SDPooled

represents the pooled standard deviation of the pretest scores, which is
calculated as follows (Morris, 2008; Schmidt & Hunter, 2014):

SDPooled;Pre¼

ffi

ðNT � 1ÞSD2
T;Pre þ ðNC � 1ÞSD2

C;Pre

NT þ NC � 2

s

NT and NC represent the sample sizes of the treatment and control
group, and SD2

T;Pre and SD2
C;Pre their pretest score variances. We then

transformed the effect size ES into Hedges’ g (with df ¼ NT þ NC � 2):

g¼
�

1 �
3

4df � 1

�

ES

The corresponding variance vg and the standard error SEg were then
calculated as follows:

vg¼

�

1 �
3

4df � 1

�2 �NT þ NC

NT NC
þ

ES2

2ðNT þ NCÞ

�

SEg¼
ffiffiffiffiffivg
p

For posttest-only designs, we applied the same calculations, yet
without the pretest scores and their standard deviations. In the cases
where the authors of the primary studies reported only the results of
statistical tests of mean differences (e.g., t- or F-tests), we used the re
ported statistics to calculate the effect size ES (for more details on these
calculations, please refer to Lipsey & Wilson, 2001). We refrained from
correcting the resulting effect sizes for the unreliability of the outcome
measures for two reasons: (a) Most studies did not provide information
on the reliability of the outcome measures; (b) The psychometric liter
ature does not draw a clear picture about the effects unreliability cor
rections may have on the overall effect sizes and their variance
components—in fact, the necessity to correct for unreliability has been
discussed controversially (Cheung, 2015; Schmidt & Hunter, 2014).

2.4. Coding of studies

To identify the information that could be gained from the primary
studies, examine possible moderation effects, and ultimately classify
studies into three main conditions, we coded all study features as either
categorical or continuous variables. These variables served at the level
of effect sizes, studies, or both. This selection of variables was based on
the findings from existing reviews, meta-analyses, and interventions
which identified them as moderators or sources of differential effec
tiveness (e.g., Liao, 2000; Liao & Bright, 1991; Shute et al., 2017;
Umapathy & Ritzhaupt, 2017). These variables further describe the
contexts or conditions under which programming interventions may or
may not succeed (Grover & Pea, 2013). To ensure the reliability of the
coding, about 25% of the full texts were double-coded; the resulting
agreement was 94%, and disagreements were resolved during a dis
cussion session until consensus had been reached. Supplementary Ma
terial S1 contains all coded variables.

Classification of studies (Study conditions). Given the diversity of

effects examined in the primary studies, we classified the studies ac
cording to the type of effects they allowed us to investigate. The resul
tant variable “Classification” was informed by the framework of
intervention studies proposed by Chen et al. (2018). More concisely,
primary studies were classified into one of the following three condi
tions (see also Table 1):

(1) Studies that reported the effectiveness of programming instruction per
se (m ¼ 12, k ¼ 14): These studies included at least one treatment
group that was exposed to programming instruction and at least
one control group that engaged in instruction other than pro
gramming. Examples of interventions are: Programming in
struction with Lego Mindstorms® (experimental group) vs. no
programming at all (control group; e.g., Milner, 1973; Nugent,
Barker, Grandgenett, & Adamchuk, 2010); programming in
struction to solve mathematical problems (experimental group)
vs. instruction to solve mathematical problems without the
involvement of programming (control group; e.g., Oprea, 1984;
Psycharis & Kallia, 2017).

(2) Studies that reported the effectiveness of visualization (m ¼ 20, k ¼
46) or physicality (m ¼ 7, k ¼ 27): These studies examined the
effectiveness of visual programming tools or tools that involve
physicality, that is, students can observe the result of their pro
gramming activities via the movements of physical objects. Ex
amples of interventions are: Visualizing programming languages
(experimental group) vs. representation of programming lan
guages as only text (control group; e.g., Siozou, Tselios, & Komis,
2008); Programming instruction with visual programming lan
guage A (experimental group) vs. programming instruction with
visual and text-based language B (control group; e.g., Cetin,
2016; Daly, 2013); Programming involving robotics (experi
mental group) vs. programming without robotics (e.g., Huang,
Yang, & Cheng, 2013; Rodríguez Corral, Civit, Perez-Pe~na, &
Molina, 2016).

(3) Studies that reported the effectiveness of instructional approaches (m
¼ 88, k ¼ 263): These studies examined the effects of instruc
tional practices that did not involve the modification of the pro
gramming tools—control and treatment groups differed in their
instruction, yet not the programming languages students used.
Examples of interventions are: Pair programming (experimental
group) vs. individual programming (control group; e.g., Altintas,
Gunes, & Sayan, 2016); discovery learning or problem-solving
instruction (experimental group) vs. teacher-directed instruc
tion (control group; e.g., Carney, 2000; Yang, Hwang, Yang, &
Hwang, 2015). During the systematic review, the existing body of
instructional approaches was extracted and classified into the
following categories: (a) Blended learning, (b) Collaboration, (c)
Feedback, (d) Game-based learning, (e) Metacognition, (f)
Problem solving, (g) Others. Although these approaches are
well-aligned with the extant literature reviewing programming
instruction (e.g., Hsu et al., 2018), this list is by no means
exhaustive. In fact, other approaches may play an important role
for computer science educators, such as storytelling, scaffolding,
or critical computational literacy instruction (Hsu et al., 2018);
however, the primary studies we extracted from the literature
databases only allowed us to examine and synthesize the effec
tiveness of the beforementioned instructional approaches.

The detailed list of studies including their classification and a
description of the study effects can be found in the Supplementary
Material S1 (variable “Classification”).

Outcome variables. As noted earlier, we referred to a broad
conceptualization of programming skills in this meta-analysis, allowing
both knowledge and skill domains as outcome variables. To further
differentiate between different dimensions of programming skills—and
therefore perhaps find evidence for or against the differential

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

8

effectiveness of programming interventions—we coded the outcome
variables as either ‘programming knowledge’ or ‘programming skills’.
The former comprised procedural and conceptual knowledge; the latter
comprised the skills to create, evaluate, and refine code as well as
debugging and engaging in computational practices in general. Several
measures of programming knowledge and skills were used—these
measures comprised students’ performance on knowledge tests (e.g.,
Logo Knowledge Test; see Lehrer, Lee, & Jong, 1999) or computational
thinking tests (e.g., Jenkins, 2015), next to their course performance (e.
g., measured by course grades or performance scores of programming
assignments; Barak, Harward, Kocur, & Lerman, 2007) and exam scores
(e.g., Shyr, 2010). We note that the computational thinking tests
assessed mainly skills rather than knowledge; this skillset comprised the
creation, modification, or application of computer code—these tests
consequently fell into the category of skills tests. Besides, some authors
used process and product data to describe and evaluate students’ pro
gramming performance (e.g., by evaluating code, Liu et al., 2013; by
evaluating indicators of programming difficulty, Mason & Cooper,
2013). We notice that all outcome measures of programming knowledge
and skills were performance-based and did not include any self-report
measures. Students’ performance was indicated by test scores, grades,
or scores that describe the quality of the programming code. Overall, the
two outcome categories programming knowledge and skills may include
overlapping competences; however, it was not possible to provide a
greater level of granularity due to the limited reporting of the more
specific sub-competences measured by the tests or exams.

Instructional approaches. Exploring the studies that reported the
effectiveness of dominant instructional approaches (Fl�orez et al., 2017;
Hsu et al., 2018), we found that the intervention programs focused on
blended learning, the provision of feedback, learning programming
through computer games, fostering metacognition, collaborative activ
ities, problem solving instruction, and others. Table 2 gives an account
of these instructional approaches and contains sample references; Sup
plementary Material S1 contains more detailed descriptions of these
approaches for each study. We note that the category “Collaboration”
contains primary studies that compared an intervention group in which
students learned programming collaboratively with a control group in
which students worked individually. This category also contained
studies that examined the effectiveness of so-called “pair programming”.

Programming tools. We coded the programming tools used in the
interventions as ‘visual’ (e.g., Scratch, Alice), ‘text-based’ (e.g., C, Java),
or a ‘mixture’ of both. Given the popularity of Lego Mindstorms®, Logo,
and Scratch in recent years (Hsu et al., 2018), we further identified more
specifically whether or not these three tools were used.

Study features. The design of the primary studies was coded as
either a ‘pretest-posttest control group design’ or a ‘posttest-only
design’. Given that some studies contained multiple measures and
samples, it was possible that multiple designs occurred within one study.
For instance, if the authors of a study administered a programming skills
test before and after the intervention and a programming knowledge test
only after the intervention, the study contained both designs—that is, a
pretest-posttest design for the former and a posttest design for the latter.
Hence, the study design was primarily a variable at the level of effect
sizes. Next to the study design, we also coded the randomization (i.e.,
‘randomized’, ‘not randomized’) and matching (i.e., ‘matched’, ‘not
matched’) of the experimental groups, the collaboration among students
during the intervention (i.e., ‘collaboration’, ‘no collaboration’), the
study context (i.e., ‘regular lessons’, ‘extracurricular activity’), and the
standardization of the outcome measures (i.e., ‘standardized’, ‘unstan
dardized’). Finally, the intervention length was coded as the time spent
on the intervention in hours. The selection of these study features was
based on the previous meta-analyses, including that conducted by
Scherer et al. (2019) on the transfer effects of computer programming.

Sample features. Sample features comprised the educational level
the intervention was targeted at (i.e., ‘primary’, ‘secondary’, or ‘tertiary’
education), the continent the study sample originated from (i.e., ‘Asia’,

‘Europe’, ‘North America’, or ‘Others’; the latter included Australia and
African countries and occurred seldomly), the average age of students in
years, and the proportion of female students in the primary studies.

Publication features. We established publication status as another,
possible moderating variable and based the definition of “grey litera
ture” on Adams, Smart, and Huff’s (2017) framework. In this frame
work, grey literature included dissertations, conference proceedings,
working papers, book chapters, technical reports, and other references
that have not been published in scholarly journals after peer-review (see
also Schmucker et al., 2017). Publication status was thus coded as ‘grey’
or ‘published’. Despite the efforts taken (e.g., contacting the authors via
informal platforms, such as ResearchGate or the mailing lists of com
puter science education societies), unpublished studies could not be
retrieved. Next to the status of publication, we kept track of the year of
publication.

2.5. Statistical analyses

The meta-analytic data within the three study conditions have a
nested structure, because many studies reported multiple effect sizes.
This nesting of effect sizes in studies represents a violation of the inde
pendence assumption in classical meta-analysis (Borenstein, Hedges,
Higgins, & Rothstein, 2009). As a consequence, we took an approach
that directly accounted for the dependencies between effect sizes,
namely three-level random-effects meta-analysis (Cheung, 2014). In
three-level random-effects meta-analysis, the variation of effect sizes
between studies (level 3, variance σ2

3) and their variation within studies
(level 2, variance σ2

2) are quantified in addition to the sampling vari
ability (level 1). For a given data set of primary studies exhibiting a
nested structure, these variance components can be estimated and tested
for their deviation from zero by means of model comparisons (i.e.,
comparing a model with freely estimated variances with a model con
straining these variances to zero). Cheung (2015) suggested using the
likelihood-ratio test to conduct such model comparisons (see Supple
mentary Material S3–S8). Nevertheless, as the testing of significant
within- and between-study variances is against the boundary of zero, the
confidence intervals of the variances may contain zero, and the
likelihood-ratio tests may indicate only a marginal difference in model
fit (Cheung, 2015). As a consequence, several authors argued that the
decision for a baseline model with random effects should not only be
based on the significance tests of variances and heterogeneity tests only,
but relies mainly on the substantive assumptions on whether the effect
sizes may or may not vary within or between studies (Cheung, 2015;
Viechtbauer, 2005). Acknowledging the limitations of the statistical
tests and considering that the meta-analytic data are hierarchical, we
chose the three-level random-effects model as the baseline model.

For the three study conditions, we performed separate meta-analyses
to obtain the aggregated effect sizes specific to these conditions (see also
Chen et al., 2018). More specifically, to ensure that studies reporting the
same type of effects within each condition are synthesized (and thus a
validity argument for the overall effect sizes can be crafted), we per
formed one meta-analysis for study condition 1, two meta-analyses for
study condition 2 (i.e., for primary studies focusing on visualization or
physicality), and six meta-analyses for study condition 3 (i.e., one for
each instructional approach).

To examine the extent to which study, sample, and publication fea
tures may explain variation within or between studies, we extended the
meta-analytic baseline models to three-level mixed-effects models
(Cheung, 2015). Categorical moderators with more than two categories
were dummy-coded, and moderators without any variation across effect
sizes or only one effect size within a category were not considered in
these analyses. Continuous moderators were z-transformed or, in the
case of proportions, arcsine-transformed.

We specified all models in the R package ‘metafor’ using restricted
maximum likelihood estimation (Viechtbauer, 2017), and variance

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

9

explanations were obtained from the reduction of level-2 and level-3
variances (Cheng, Cheung, & Wang, 2018). Please find the corre
sponding R code and output in the Supplementary Material S3–S8.

2.6. Publication bias, influential effect sizes, and sensitivity analyses

To determine the degree of publication bias present in the meta-
analytic data sets in each study condition, we conducted several ana
lyses: First, we performed trim-and-fill analyses and examined the fun
nel plot of effect sizes to identify a possible asymmetry that might be due
to publication bias (Duval & Tweedie, 2000). These analyses provided
an overall intervention effect size in each condition adjusted for publi
cation bias and the number of missing studies to achieve symmetry in
the funnel plot. We further tested the asymmetry using Egger’s linear
regression test (Egger, Smith, Schneider, & Minder, 1997). Second, we
estimated the fail-safe N based on Rosenberg’s procedure (Borenstein
et al., 2009). Third, we examined the p-curve underlying the all inter
vention effects on computer programming in the data set (Simonsohn,
Nelson, & Simmons, 2014). If the p-curve is right-skewed, the primary
studies have evidential value and there is no evidence for p-hacking. We
used the ‘P-curve Online App’ to obtain the p-curve (Simonsohn, Nelson,
& Simmons, 2017).

Besides the analysis of publication bias, we identified influential
effect sizes using Viechtbauer and Cheung’s (2010) diagnostics using the
R package ‘metafor’. An effect size was considered influential if the
leave-one-out diagnostics exceeded the common thresholds (for more
details on these thresholds, please refer to Viechtbauer, 2017). Please
find the corresponding diagnostic plots in the Supplementary Material
S3, S5, and S7. If, indeed, influential effect sizes are detected, re
searchers have several options to handle them—either delete or keep
them. Such decisions, however, are to be supplemented by a review of
the study, sample, and publication features, which may or may not
indicate poor study quality. In fact, if an effect size is identified as
influential and the study quality is poor (e.g., no randomization,
posttest-only design, small sample sizes, no information about the reli
ability of measures; Valentine, 2019), researchers may well exclude it
from the meta-analytic data. In the present study, we followed this
procedure (i.e., examining the features of the study that exhibits influ
ential effect sizes). If effect sizes were indeed excluded, we also studied
the effects of this exclusion on the meta-analytic model parameters.
These effects are reported as part of the sensitivity analyses.

3. Results

3.1. Description of studies

The full sample comprised of 139 primary studies yielding 375 effect
sizes from 26,864 students (control groups: NC ¼ 13,090, treatment
groups: NT ¼ 13,774). Most studies followed a posttest-only design
(74.1%), included active control groups (92.8%) that were not matched
with the treatment group (77.7%), and that implemented the pro
gramming intervention as part of regular school lessons (83.5%). About
half of the studies reported a randomization of the experimental groups
(49.6%). The study samples mainly included college and university
students (72.3%), whose age ranged between 7 and 27 years, and the
average proportion of female students was 46.0% (SD ¼ 14.7%, Mdn ¼
50.0%). Interventions lasted between one and 105 h (M ¼ 21.4, SD ¼
18.5, Mdn ¼ 20 h). Supplementary Material S1 contains the raw data
underlying this description.

3.2. P-curve and influential effect sizes

The p-curve was right-skewed and suggested that the pool of effect
sizes extracted from the primary studies had evidential value (see
Fig. 3). We identified one influential effect size in study condition 1, one
in study condition 2 (physicality), and six influential effect sizes in study

condition 3 (collaboration, feedback, metacognition, and others), each
of which were flagged by student residuals, Cook’s distance, and other
leave-one-out deletion measures (see Supplementary Material S3, S5,
and S7). These effect sizes were large and positive and ranged between g
¼ 1.74 and g ¼ 4.08. After reviewing the study, sample, and publication
features underlying these effect sizes, we decided to remove three of
them. Please find the detailed reasoning for this decision in the Sup
plementary Material S2.

3.3. Effectiveness of programming interventions per Se (RQ1)

Baseline model. To obtain an overall effect size describing the
effectiveness of computer programming intervention per se, we estab
lished a baseline model that accounts for the variation of effect sizes
within (level 2) and between studies (level 3). This three-level random-
effects model resulted in an overall effect size of g ¼ 0.814 (95% CI
[0.420, 1.207]), a significant variance σ2

3 (see Table 3), and provided
evidence for the heterogeneity of effects (Q [12] ¼ 59.8, p < .001; I2

2 ¼

0.0%, I2
3 ¼ 93.7%). These indices suggest substantial variation of effect

sizes between rather than within studies, given that only two studies
provided multiple effect sizes. The profile plot showed a maximum at the
estimate bσ2

3 and a decrease on log-likelihood values when moving
further away from it (see Supplementary Material S4). The between-
study variance can therefore be identified. Although the within-study
variance was small, and its 95% confidence interval contained zero,
we still allowed for its estimation due to the issues associated with
testing this variance against its boundary (Cheung, 2015).

Moderator analysis. Due to the small number of effect sizes and
primary studies in this category, we were not able to conduct meaningful
moderator analyses—moderator effects would have been underpow
ered, and variances and variance explanations may not have been reli
ably estimated, especially for subgroups of studies containing only one
or two effect sizes (e.g., Jackson & Turner, 2017; Valentine, Pigott, &
Rothstein, 2010). Nevertheless, we reported the effect size for all
moderator categories in the Supplementary Material S4.

Sensitivity analysis and publication bias. To examine the effect of
the influential effect size, we estimated the three-level random-effects
model for the full sample of studies in this condition, that is, the sample
of primary studies keeping the one influential case (see Supplementary
Material S3). This model revealed a positive, statistically significant, and
slightly larger intervention effect, g ¼ 1.047 (95% CI [0.472, 1.622], z ¼

Fig. 3. P-curve of the full sample of effect sizes.

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

10

3.6, p < .001). The within-study variance was σ2
2 ¼ 0.000 (95% CI

[0.000, 0.674]), and the between-study variance was σ2
3 ¼ 0.922 (95%

CI [0.130, 2.874]), indicating larger variation and uncertainty in the
estimates. The removal of the influential case decreased the overall ef
fect size; yet, the conclusion that a large, positive, and significant effect
of programming instructions per se exists remained.

The trim-and-fill analyses indicated that no study was missing on the
left side of the funnel plot (SE ¼ 2.124), and Egger’s linear regression
test suggested that the no statistically significant funnel plot asymmetry
was given (see Supplementary Material S3). In light of the small number
of effect sizes, the fail-safe N was large (Table 3).

3.4. Effectiveness of visualization and physicality (RQ2)

Baseline models. For the sample of primary studies examining the
effects of visualization, the three-level random-effects models resulted in
an overall and significant effect size of g ¼ 0.436 (95% CI [0.289,
0.583]). The within-study variation was small, while the between-study
variation was substantial (see Table 3). Moreover, significant hetero
geneity of effect sizes was indicated, Q [45] ¼ 93.5, p < .001. For the
sample of primary studies examining the effects of physicality, the overall
effect size was large, g ¼ 0.718 (95% CI [0.226, 1.210]). Similar to the
visualization effects, the within-study variation was negligible but some
between-study variation existed (see Table 3). However, the effect sizes
were homogeneous, Q [25] ¼ 28.3, p ¼ .295.

3.4.1. Moderator analyses2

Visualization. While the study design and publication features did
not exhibit significant moderation effects (see Supplementary Material
S5), some sample features did. Specifically, primary studies involving
Asian student samples showed higher effect sizes (g ¼ 0.801, 95% CI
[0.567, 1.005]) than samples comprising students from other continents
(gs ¼ 0.053–0.348)—the difference was statistically significant (B ¼
0.748, SE ¼ 0.206, p < .001; R2

2 ¼ 0.261, R2
3 ¼ 0.865; QM[3] ¼ 20.7, p <

.001). Moreover, the proportion of female students in the primary
studies was positively associated with the overall effect size (B ¼ 1.922,
SE ¼ 0.450, p < .001, with arcsine transformation). Finally, the primary
studies involving the visual programming Scratch showed larger effect
sizes (g ¼ 1.014, 95% CI [0.562, 1.466]) than those involving other
programming languages (g ¼ 0.380, 95% CI [0.248, 0.512])—these ef
fects were statistically significant (B ¼ 0.634, SE ¼ 0.240, p ¼ .008; R2

2 ¼

0.008, R2
3 ¼ 0.525).

Physicality. The three-level mixed-effects models identified several
study and sample features as significant moderators (see Supplementary
Material S5). Similar to the studies focusing on visualization, studies
comprising Asian samples showed larger effects (g ¼ 1.574, 95% CI
[1.154, 1.995]) than those comprising other samples (gs ¼
0.216–0.871). This moderation effect was statistically significant (B ¼
1.358, SE ¼ 0.221, p < .001; QM[2] ¼ 46.0, p < .001). Furthermore, the
effectiveness of physicality as a means to programming instruction was
significantly smaller for samples enrolled in secondary education (g ¼
0.238, 95% CI [0.115, 0.360]) than for primary (g ¼ 1.439, 95% CI
[1.083, 1.795]) or tertiary education (g ¼ 1.472, 95% CI [1.130, 1.815];
B ¼ � 1.235, SE ¼ 0.178, p < .001; QM[2] ¼ 48.3, p < .001). The average
age of the student samples was positively associated with the effect sizes
(B ¼ 0.251, SE ¼ 0.124, p ¼ .043). Finally, short-term interventions were
more effective than longer interventions, as the negative moderation
effect of intervention length indicated (B ¼ � 0.245, SE ¼ 0.090, p ¼
.007).

Sensitivity analyses and publication bias. After excluding one
influential effect size, the overall intervention effect of interventions
focusing on physicality decreased, g ¼ 0.478 (95% CI [0.149, 0.808], z
¼ 2.8, p ¼ .004), and so did the within-study (σ2

2 ¼ 0.000, 95% CI [0.000,
0.027]) and between-study variances (σ2

3 ¼ 0.129, 95% CI [0.008,
0.840]). The moderation effects, however, could also be found in the
reduced sample (see Supplementary Material S6).

For the visualization interventions, five primary effect sizes were
missing to achieve symmetry in the funnel plot (SE ¼ 4.413; see Sup
plementary Material S5), reducing the overall effect to g ¼ 0.373 (95%
CI [0.264, 0.482], z ¼ 6.7, p < .001). Egger’s regression test, however,
indicated that asymmetry was not significant, and the fail-safe N was
large (see Table 3). For the physicality interventions, the trim-and-fill
analyses indicated that no study was missing on the left side of the
funnel plot (SE ¼ 0.1271), and Egger’s linear regression test suggested
that the no statistically significant funnel plot asymmetry was given (see
Supplementary Material S5), and the fail-safe N was large (Table 3).
Overall, these results suggested that some degree of publication bias
existed in the visualization condition.

3.5. Effectiveness of instructional approaches (RQ3)

3.5.1. Baseline models
Overall study sample. As noted earlier, we performed separate meta-

analyses for each of the instructional approaches to ensure the compa
rability of effects reported in the primary studies within these ap
proaches. Nevertheless, to set a reference of instructional effectiveness
against which the resultant effect sizes for each approach could be
evaluated, we specified and estimated a baseline model for the entire
data in this study condition (m ¼ 88, k ¼ 263; see Supplementary Ma
terial S7). The resultant three-level random-effects model yielded an
overall effect size of g ¼ 0.598 (95% CI [0.494, 0.702], z ¼ 11.29, p <

Table 3
Results of the baseline models describing the overall intervention effects for
study conditions 1 and 2.

Study condition 1 Study condition 2

Effectiveness of
Programming
Instruction Per Se

Effectiveness of
Visualization

Effectiveness of
Physicality

Overall effect size
g 0.814 0.436 0.718
95% CI [0.420, 1.207] [0.289, 0.583] [0.226, 1.210]
z-value 4.05 5.81 0.01
p-value <.001 <.001 .004
m 11 20 7
k 13 46 27
Variance estimates
Within-study variance
σ2

2 0.000 0.018 0.000

95% CI [0.000, 0.543] [0.000, 0.091] [0.000, 0.027]
Between-study variance
σ2

3 0.359 0.062 0.392

95% CI [0.000, 1.306] [0.000, 0.204] [0.119, 1.735]
Heterogeneity test
Cochran’s Q 59.78 93.48 65.31
df 12 45 26
p-value <.001 <.001 <.001
Heterogeneity indices
I22 0.0% 13.8% 0.0%

I23 86.1% 47.2% 84.9%

Publication
bias

Rosenberg’s
fail-safe N

277 955 155

Egger’s linear regression test
t-value 0.00 1.93 1.25
df 11 44 25
p-value 1.00 .06 .22

Note. g ¼ Weighted average effect size Hedges’ g, 95% CI ¼ 95% Wald confi
dence interval, m ¼ Number of studies, k ¼ Number of effect sizes, df ¼ degrees
of freedom, I2

2 ¼ Heterogeneity index for level 2, I2
3 ¼ Heterogeneity index for

level 3 (see Cheung, 2015). The analysis of publication bias was based on a
two-level random-effects model.

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

11

.001) and exhibited within-study and between-study variation (Q [262]
¼ 1348.91, p < .001; σ2

2 ¼ 0.276, 95% CI [0.203, 0.368]; σ2
3 ¼ 0.072,

95% CI [0.012, 0.187]; I2
2 ¼ 66.8%, I2

3 ¼ 17.4%). Introducing the type of
instructional approach as a moderator variable to this model indicated
that the effect sizes did not differ significantly across approaches, QM(6)
¼ 2.81, p ¼ .83. Moreover, modeling the instructional approaches as
another level of analysis (i.e., in a four-level random-effects model)
showed that the between-approaches variance was negligible (σ2

4 ¼

0.000, 95% CI [0.000, 0.038]), and the information criteria were
reduced only marginally (three-level model: AIC ¼ 536.8, BIC ¼ 547.5;
four-level model: AIC ¼ 538.8, BIC ¼ 553.0). Hence, there was no evi
dence supporting the statistically significant differences in effect sizes
between instructional approaches. We notice that the overall effect size
across the instructional approaches should not be further interpreted
substantively, given the different nature of effects and experimental
conditions across the primary studies.

Separate meta-analyses for the instructional approaches. Table 4
shows the results of the separate meta-analyses, that is, the parameters
of the three-level random-effects models for each of the instructional
approaches. Supplementary Material S7 and S8 contain the corre
sponding data input and analytic output files. Overall, the average effect
sizes ranged between g ¼ 0.493 (feedback) and g ¼ 1.023 (blended
learning) and thus exhibited moderate to large effects. Notably, the
samples of primary studies and effect sizes varied in their sizes across
approaches. Specifically, two approaches contained only three (blended
learning) or four effect sizes (game-based learning); the resultant
average effect sizes and their variance components should therefore be
interpreted with caution. However, all other approaches contained be
tween 40 and 78 effect sizes and provided moderate and statistically
significant effect sizes (see Table 4). These effects varied mainly within
studies (collaboration, feedback, and problem solving), and in only one

case substantially between studies (metacognition). Next to the effects of
these well-defined instructional approaches, seven studies provided 15
effect sizes indicating the effectiveness of other approaches (category
“Other”). Synthesizing these effects resulted in a moderate overall effect
size, g ¼ 0.490 (95% CI [0.028, 0.952]; see Supplementary Material S7
and S8). However, we neither interpreted nor extended the meta-
analysis of this category by moderator variables due to the lack of
comparability of effects within it.

Moderator analyses.2 In the following, we will summarize the re
sults of the moderator analyses for each instructional approach. These
analyses, however, excluded the following categories: Blended learning,
game-based learning, and others. For more details on the moderator
analyses, we refer readers to the Supplementary Material S7 and S8.

Collaboration. Variation in the effect sizes for this instructional
approach could be explained by the following moderators: (a) Test type:
Primary studies administering standardized tests showed higher effects
(g ¼ 1.323, 95% CI [0.954, 1.692]) than those administering non-
standardized tests of programming knowledge or skills (g ¼ 0.438,
95% CI [0.274, 0.601])—this difference was statistically significant (B
¼ 0.885, SE ¼ 0.206, p < .001). (b) Educational level: Sample comprising
students enrolled in primary education showed the smallest and insig
nificant effects with large uncertainty (g ¼ � 0.855, 95% CI [-1.918,
0.207]), followed by university and college students (g ¼ 0.496, 95% CI
[0.300, 0.692]). The highest effect sizes were indicated for the samples
of students in secondary education (g ¼ 1.507, 95% CI [0.875, 2.139]).
These differences were statistically significant (QM[2] ¼ 0.04, p ¼ .007)
and explained mainly between-study variation (R2

2 ¼ 0.066, R2
3 ¼

0.461). (c) Type of outcome variable: Primary studies focusing on

Table 4
Results of the baseline models describing the overall intervention effects for study condition 3.

Study condition 3

Effectiveness of instructional approaches

Blended learning Collaboration Feedback Game-based learning Metacognition Problem solving

Overall effect size
g 1.023 0.560 0.493 0.821 0.658 0.518
95% CI [0.291, 1.756] [0.353, 0.767] [0.207, 0.780] [-0.126, 1.768] [0.332, 0.983] [0.378, 0.659]
z-value 2.74 5.30 3.38 1.70 3.95 7.25
p-value .006 <.001 <.001 .089 <.001 <.001
m 3 24 10 2 14 27
k 4 50 78 3 49 63
Variance estimates
Within-study variance
σ2

2 0.039 0.164 0.245 0.591 0.059 0.243

95% CI [0.000, 2.563] [0.083, 0.329] [0.140, 0.407] [0.005, 13.088] [0.000, 0.245] [0.149, 0.392]
Between-study variance
σ2

3 0.346 0.148 0.073 0.000 0.289 0.000

95% CI [0.000, 7.183] [0.026, 0.395] [0.000, 0.684] [0.000, >10.000] [0.018, 0.969] [0.000, 0.072]
Heterogeneity test
Cochran’s Q 21.98 361.89 277.82 9.98 129.17 280.10
df 3 49 77 2 48 61
p-value <.001 <.001 <.001 .007 <.001 <.001
Heterogeneity indices
I22 8.9% 46.9% 58.1% 85.9% 12.4% 82.5%

I23 78.6% 42.3% 17.3% 0.0% 61.1% 0.0%

Publication bias
Rosenberg’s fail-safe N 43 2649 1046 9 892 1996
Egger’s linear regression test
t-value � 2.02 1.74 0.34 0.27 1.68 2.52
df 2 48 76 1 47 60
p-value .18 .09 .74 .83 .10 .01

Note. g ¼Weighted average effect size Hedges’ g, 95% CI ¼ 95% Wald confidence interval, m ¼ Number of studies, k ¼ Number of effect sizes, df ¼ degrees of freedom,
I2
2 ¼ Heterogeneity index for level 2, I2

3 ¼ Heterogeneity index for level 3 (see Cheung, 2015). The analysis of publication bias was based on a two-level random-effects
model.

2 In some instances, the variance explanations (within and between studies)
could not be estimated reliably due to missing data in the moderator variables.

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

12

programming knowledge showed a small and insignificant average ef
fect size (g ¼ � 0.036, 95% CI [-0.636, 0.563]), while those focusing on
programming skills showed a moderate average effect size (g ¼ 0.607,
95% CI [0.405, 0.808])—this difference was statistically significant (B
¼ � 0.643, SE ¼ 0.311, p ¼ .039; R2

2 ¼ 0.075, R2
3 ¼ 0.160). (d) Proportion

of female students: Finally, effect sizes derived from studies with more
female students tended to be smaller (B ¼ � 1.109, SE ¼ 0.578, p ¼ .055,
with arcsine transformation). All other study, sample, and publication
features did not show moderating effects (see Supplementary Material
S8).

Feedback. Among all possible moderating variables, only the study
feature of randomization explained variation in the effect sizes for this

category (see Supplementary Material S7). More specifically, primary
studies performing randomization showed smaller average effect sizes
(g ¼ 0.324, 95% CI [0.143, 0.506]) than those without randomization (g
¼ 0.999, 95% CI [0.480, 1.518]). This difference was statistically sig
nificant, B ¼ � 0.675, SE ¼ 0281, p ¼ .016.

Metacognition. The moderator analyses revealed that primary
studies taking metacognitive instruction as an approach to teaching
computer programming were more effective when conducted in
collaborative settings (g ¼ 1.774, 95% CI [0.999, 2.549]; B ¼ 1.355, SE
¼ 0.430, p ¼ .002) than in settings with individual work (g ¼ 0.419, 95%
CI [0.090, 0.749]), explaining mainly between-study variance in effect
sizes (R2

2 ¼ 0.083, R2
3 ¼ 0.661). Please find more details on the moder

ator analyses in the Supplementary Material S7.
Problem solving. The context in which the programming instruction

focusing on problem solving was conducted moderated the average ef
fect size in this category (see Supplementary Material S7). More spe
cifically, primary studies conducted in extracurricular settings were
more effective (g ¼ 0.736, 95% CI [0.479, 0.992]) than those conducted
in regular lessons (g ¼ 0.431, 95% CI [0.270, 0.591]). This difference
was statistically significant (B ¼ � 0.305, SE ¼ 0.154, p ¼ .048) and
explained only within-study variation (R2

2 ¼ 0.094, R2
3 ¼ 0.000).

Summary. Overall, some of the study, sample, and publication fea
tures moderated the average effect sizes for the instructional ap
proaches. However, these moderation effects were by no means
systematic, and some of them must be interpreted with caution, given
the relatively small number of effect sizes in some of the categories.
Table 5 summarizes the effects for study condition 3 and all other
conditions.

Sensitivity analyses and publication bias. For the instructional
approaches with identified influential effect sizes, we performed sensi
tivity analyses. A detailed description of the specific results for each
approach is provided in Supplementary Material S8. Overall, the
exclusion of influential cases reduced the average effects and the cor
responding variance components slightly; the moderation effects largely
remained. The analyses of publication bias revealed some degree of bias
in the problem-solving category (significant Egger’s regression test), yet
no further evidence for the other categories (see Table 4).

4. Discussion

4.1. Effectiveness of computer programming interventions in the three
conditions

Effectiveness per se. Synthesizing the primary studies of the effec
tiveness of programming interventions per se, we found a large effect for
the studies that compared programming instruction with instruction
outside the programming domain (g ¼ 0.814). This effect size serves as a
reference point for all other effect sizes—presumably, effect sizes in the
other study conditions may be lower, mainly because there was no
exposure to programming in the control groups under study condition
(1) (see also Scherer et al., 2019). Similarly, Tsai and Tsai (2018), as
they reviewed game-based interventions in the domain of language
learning, found the largest effects when control groups did not engage in
game-based education. The remaining two conditions, indeed, showed
moderate effect sizes for the categories with at least five effect sizes (gs
¼ 0.494–0.718).

Although the effectiveness of programming interventions per se does
not carry information directly relevant to instructional approaches and
conditions, the finding that the effect size was positive already has
several implications and contributions to the field of educational tech
nology: First, it shows that programming knowledge and skills can be
taught and acquired. Together with Brown and Wilson (2018), we argue
that programmers are “not born but made”—in other words, we agree
that the knowledge and skills involved in programming are not neces
sarily innate, thus contrasting some beliefs about the nature of

Table 5
Summary of the main findings.

Research Question (RQ) Overall Effect
Size (g)

Significant Moderator Effects

RQ1. Effectiveness of
programming
instruction per se

g ¼ 0.814, 95%
CI [0.420,
1.207]

� Type of outcome variable: Larger
effects for tests assessing
programming knowledge

RQ2a. Effectiveness of
visualization

g ¼ 0.436, 95%
CI [0.289,
0.583]

� Programming tool: Larger effects
for primary studies using Scratch

� Continent: Larger effects for Asian
student samples

� Proportion of female students:
Larger effects for samples with
more female students

RQ2b. Effectiveness of
physicality

g ¼ 0.718, 95%
CI [0.226,
1.210]

� Programming tool: Larger effects
for studies involving Lego
Mindstorms®

� Continent: Order of effects, Asian
samples > European samples >
Samples from other continents

� Educational level: Smaller effects
for samples of secondary school
students

� Average age: Positive association
between average age and
intervention effects

� Intervention length: Larger effects
for shorter interventions

RQ3. Effectiveness of
instructional
approaches

g ¼ 0.520, 95%
CI [0.437,
0.603]

–

a Blended learning g ¼ 1.023, 95%
CI [0.291,
1.756]

–

b Collaboration g ¼ 0.560, 95%
CI [0.351,
0.767]

� Type of outcome variable: Smaller
effects on tests assessing
programming knowledge

� Test type: Larger effects for
standardized tests

� Educational level: Order of effects,
Secondary > Tertiary education
> Primary education

� Proportion of female students:
Smaller effects for samples with
more female students

c Feedback g ¼ 0.494, 95%
CI [0.207,
0.780]

� Randomization: Smaller effects for
studies with randomly assigned
groups

d Game-based learning g ¼ 0.821, 95%
CI [-0.126,
1.768]

–

e Metacognition g ¼ 0.658, 95%
CI [0.332,
0.983]

� Collaboration: Larger effects for
collaborative settings

f Problem solving g ¼ 0.518, 95%
CI [0.378,
0.659]

� Study context: Larger effects for
programming instruction as part
of extracurricular activities

g Others g ¼ 0.490, 95%
CI [0.028,
0.952]

–

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

13

programming talent as being innate (Guzdial, 2014). Among other do
mains, learning computer programming is possible, and intervention
programs are, on average, effective in fostering the acquisition of the
knowledge and skills needed for the mastery of the art (for a similar
discussion in other domains, see Macnamara, Hambrick, & Oswald,
2014). Although the finding that “programming knowledge and skills
can be taught and acquired” is expected and may not be considered
ground-breaking, it is still a relevant observation as corresponding effect
size creates a reference point within the field. More specifically, re
searchers who may want to evaluate the magnitude of their program
ming interventions can use this reference. In this sense, the reporting of
overall effect sizes contributes to the mapping of the effectiveness of
programming intervention next to the effectiveness of other,
technology-based interventions. For instance, Chauhan (2017), who
meta-analyzed interventions targeted at learning with technology in
elementary education, found an overall effect of g ¼ 0.55; Young (2017)
found that learning mathematics with technology is effective for
fostering mathematical knowledge and skills, g ¼ 0.38. Of course,
although these meta-analyses contained primary studies focusing on the
effectiveness of programming instruction, these effect sizes may only
serve as rough references because these meta-analyses also included
primary studies with outcome variables outside the programming
domain. In their meta-analysis of the transfer effects of learning com
puter programming on skills other than programming, Scherer et al.
(2019) identified a moderate overall effect size, g ¼ 0.47. The effect size
we obtained from primary studies using programming knowledge and
skills as outcome variables was substantially higher (g ¼ 0.814), espe
cially because the outcome variables and the intervention content were
aligned. Comparisons such as these validate the direction and size of the
intervention effects we identified.

Second, the positive overall effects on programming knowledge and
skills extend previous systematic reviews of programming interventions
which mostly summarized the types of interventions, measures, and
their characteristics qualitatively (e.g., Lye & Koh, 2014; Moreno-Le�on
& Robles, 2016; Shute et al., 2017)—of course, with some exceptions (e.
g., Costa and Miranda, 2017; Umapathy & Ritzhaupt, 2017; Vihavainen
et al., 2014). The main contribution of the present study therefore lies in
the quantifying of effect sizes across a broad range of interventions and
outcome variables. Despite the positive evidence for the effectiveness of
programming interventions per se, we notice that (a) these effects vary
within and between primary studies; (b) these effects do not suggest that
learning computer programming enables students to transfer the ac
quired knowledge and skills to non-programming domains—our
meta-analysis was only concerned with the near transfer to similar
programming tasks.

Visualization and physicality. Concerning the effectiveness of
programming tools under condition (2), our meta-analysis identified
moderate effects of visualization (g ¼ 0.436) and large effects for
physicality (g ¼ 0.718). The hopes associated with the better effective
ness of visual languages seem to be, at least to some extent, fulfilled
(Fl�orez et al., 2017). Visual programming languages may reduce the
cognitive load associated with the reading, understanding, and creating
of code and may therefore be more accessible to students than purely
text-based languages (Sengupta, Dickes, Voss Farris, Martin, & Wright,
2015). At the same time, some graphical elements in languages such as
Scratch may be perceived as distracting and thus draw on students’ in
hibition capabilities (Çakiro�glu and Suiçmez, 2018). The use of visual
representations of code may also aid the creating of a mental model
about the coding sequencing and the functioning of the code (Di Lieto
and Inguaggiato, 2017; Tsai, 2019). As we dug deeper in the
meta-analytic data, we tested whether the programming language
Scratch was especially effective in primary studies focusing on visuali
zation. The moderator analyses showed that effect sizes were signifi
cantly higher for studies using Scratch as compared to the languages (e.
g., Logo). This finding substantiates Moren�o-Leon’s and Robles’ (2016)
observations of the effectiveness associated with this language. The

authors proposed several explanations for this effectiveness beyond the
visual nature of the language, such as the flexibility of Scratch to
accommodate different types of projects allowing for different interests
and learning styles or the positive impact on attitudes toward a subject
or programming which may lead to better learning outcomes. From our
perspective, the empirical evidence backing these explanations still
needs to be developed, and the mechanisms behind the effectiveness of
visualization still need to be understood. We therefore encourage re
searchers to examine the cognitive underpinnings of programming with
different types of languages and assess students’ capabilities of shifting
between different types of code representations.

Concerning the effectiveness of physicality (for instance, in primary
studies using Lego Mindstorms®), we believe that this tendency may be
due to the immediate feedback made available to students after pro
gramming (Grover & Pea, 2013; Lee et al., 2014). This feedback is
manifested in specific movements or reactions the Lego robots show
after putting the computer code to action. Observing the functioning of a
computer code for real or virtual objects may also aid students’ moti
vation for engaging in coding (Afari & Khine, 2017; Tsai, 2019). The
large effects seem promising from an educator’s perspective, because
learning programming with such experiences may not only be effective
in terms of fostering students’ knowledge and skills but also their
motivation and engagement (Hsu et al., 2018).

Instructional approaches. We found some differences between the
instructional approaches to fostering computer programming identified
in our meta-analytic sample—however, these differences were statisti
cally insignificant. On the one hand, this finding might be perceived
disappointing because educational researchers would want to find evi
dence of what “works best”. On the other hand, this finding might also
be perceived promising because it shows that there are multiple ways of
fostering programming knowledge and skills (Brown & Wilson, 2018).
Nevertheless, some differences surfaced: Blended learning approaches
showed the largest intervention effects (g ¼ 1.023). This finding may be
explained by the reasoning that learning management systems, which
were used in the primary studies that focused on blended learning, can
offer students executable code examples, programming tutorials,
educational videos, platforms to share problem solution—in other
words, a wealth of learning material which may benefit students’ pro
cess of learning computer programming (Fl�orez et al., 2017). Next, the
effect of game-based interventions was slightly larger than that of others
(gaming: g ¼ 0.821). Most primary studies focusing on gaming provided
students with virtual life experiences and opportunities to design games.
These processes, as Kafai and Burke (2013) noted, shift the focus from
computer code to applications and their making. This shift may help
students engage better in computer programming and thus create more
effective interventions (Batista et al., 2016; Grover & Pea, 2013). We
notice that the number of effect sizes focusing on blended and
game-based learning were small, and the evidence presented here must
be substantiated further.

Primary studies facilitating metacognitive strategies to help students
learning computer programming showed a large overall effect (g ¼
0.658), comparable to the general effects identified for metacognitive
strategy instruction (g ¼ 0.50–0.63; de Boer, Donker, Kostons, & van der
Werf, 2018). This finding is not too surprising: Learning computer
programming is considered to be challenging, especially for novices, as
it requires not only executing or adapting computer code, but also skills
related to the planning and organizing of code, the monitoring of the
problem-solving progress and success, self-reflection, and trouble-
shooting—just to name a few (Nurulain Mohd Rum & Zolkepli, 2018;
Volet & Lund, 1994). These activities seem to be easier for students who
have acquired metacognitive strategies and awareness (Bernard &
Bachu, 2015). In this sense, teaching programming through metacog
nition seems effective, and the metacognitive skills acquired during in
struction may ultimately impact students’ problem-solving performance
and success.

The effects of collaborative activities (g ¼ 0.560) were comparable to

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

14

those identified by Umapathy and Ritzhaupt (2017), thus supporting
that this approach is effective in fostering programming knowledge and
skills. Nevertheless, we could not confirm an overall superiority of
collaborative learning over individual learning. Thinking of computer
programming as a means to engage students in problem-solving pro
cesses, adding a collaborative component to these already demanding
processes can create even more burdens on students, especially in the
beginning of the collaborative process where roles, perspective, and
knowledge are shared (OECD, 2017). Besides, not every programming
task may be feasible to be administered in collaborative settings—Siddiq
and Scherer (2017) argued that collaborative tasks in ICT-rich contexts
should be designed carefully to facilitate meaningful student-student
interactions. All in all, we argue that collaboration per se is not more
effective than the individual learning of computer programming.

Finally, problem solving instruction (g ¼ 0.518) and feedback stra
tegies (g ¼ 0.494) showed moderate effect sizes. Without discussing this
observation in large detail, we notice that these two instructional ap
proaches have generally been reported to aid the acquisition of knowl
edge and skills across several domains (e.g., Azevedo & Bernard, 1995;
Dochy, Segers, van den Bossche, & Gijbels, 2003). Reviewing the evi
dence base in our study, we observed that most of the studies conducted
in the 1980s and 1990s took a problem-solving approach to computer
programming by providing students with specific steps and sequences of
actions to solve coding problems. As noted earlier, computer program
ming, as a key element of computational thinking, engages students in
problem solving—thus, problem solving instruction is an obvious choice
for fostering programming knowledge and skills.

4.2. Contextual variables explaining variation in the intervention effects

Next to the overall effect sizes under conditions (1)–(3), we exam
ined possible moderation effects by study, sample, and publication
features, such as the type of outcome and contextual variables. The se
lection of a broad range of moderators extends existing meta-analyses on
the effectiveness of specific programming interventions and tools and
allows researchers to explore which instructional conditions may be
more or less effective. Several findings of the moderator analyses are
worth discussing.

Measurement of programming knowledge and skills. We exam
ined whether the intervention effect sizes under conditions (1) to (3)
differed between measures of programming knowledge and skills and
found significant differences in two instances: We observed larger effects
of studies assessing programming knowledge in the study condition 1
and smaller effects for studies taking a collaborative teaching approach
to programming instruction in the study condition 3. The latter finding
aligns with the tendency of collaborative instruction to be especially
effective for skill acquisition in computer-based learning environments
as compared to knowledge acquisition (Graesser et al., 2018).
Student-student interactions may be aiding the development of skills but
may depend on the knowledge students have acquired before engaging
in a problem-solving process (Siddiq & Scherer, 2017). At the same time,
knowledge sharing is key to collaboration—this sharing, however, does
not ensure that all students who collaborate will acquire the shared
knowledge to the same extent. The finding that no other moderating
effects occurred was surprising, given the considerable diversity of these
measures, as noted by Shute et al. (2017) in their review. At the same
time, the intervention programs seemed to be equally effective in
fostering both outcome variables—we consider this to be a promising
result because it shows that both knowledge and skills in the program
ming domain could be fostered to a similar extent. Moreover, the in
clusion of skills beyond knowledge measures in the primary studies
resonates with Fl�orez et al.’s (2017) plea to focus not only on the pure
knowledge of and about computer code but the very skills surrounding
it. The challenge, however, remains to clearly define these skills, espe
cially with respect to taking computational perspectives (Grover & Pea,
2013; Lye & Koh, 2014).

Notably, our meta-analysis did not reveal consistent differences in
effects between standardized than for unstandardized tests. In fact, in
only one category (study condition 3, collaboration), standardized as
sessments of programming knowledge tended to result in larger effects
than assessments that were not standardized. To summarize, we neither
found consistent evidence for the differential effectiveness of program
ming interventions between knowledge and skills not between stan
dardized and non-standardized tests.

Sample, study, and publication features. Examining the modera
tion effects of study features, we would like to highlight one finding:
First, there was no evidence for the differences in effects between
pretest-posttest and posttest-only control group designs—in contrast to
the general observations noted by Cheung and Slavin (2016). To some
extent, this finding suggests that the method bias caused by different
study designs may only be limited in our meta-analysis. Second, we
observed a tendency of negative moderation effects by the intervention
length. Longer interventions under condition (2) focusing on physicality
tended to be less effective than shorter interventions. Although this
result may be counter-intuitive, it is not unusual in the domain of
educational technology. For instance, Chauhan (2017) found that in
terventions of elementary students’ learning with technology that
exceeded 6 months were less effective than short-term interventions.
Sung, Chang, and Liu (2016) expected the duration of interventions that
examined the effects of integrating mobile devices on students’ learning
to be positive—however, the authors did not find any significant
moderation effect of intervention length in their meta-analysis. The
negative relation we found in our meta-analysis may have several rea
sons, such as the high value of novelty (i.e., when learning programming
with a new tool or language) or the higher engagement of students in the
intervention tasks in the beginning of the interventions (e.g., Cheung &
Slavin, 2013). Third, some differences between continents surfaced: for
instance, the largest intervention effects for studies examining visuali
zation or physicality were reported by studies involving Asian student
samples. Although our meta-analysis cannot provide substantive ex
planations for these differences, we suspect that several factors may
have contributed to this moderation effect. We believe that the coun
tries’ development of information and communication technology (ITU,
2017), the openness to these technologies and their advancements
(OECD, 2013), and the curricular emphasis on skills related to ICT and
computer programming (UNESCO Institute for Statistics, 2018) may be
among the possible, explanatory factors.

Finally, we would like to highlight two more moderation effects: For
the studies focusing on problem solving instruction, programming as an
extracurricular activity was more effective than as a part of regular
lessons. One of the reasons for this difference may lie in the presumably
enhanced motivation of students enrolling in extracurricular activities,
posing a selection effect on the effectiveness of the intervention (e.g.,
Durlak, Weissberg, & Pachan, 2010). Although the conclusion that
extracurricular activities may generally be more effective in fostering
programming knowledge and skills may be tempting, the primary
studies did not allow us to estimate long-term effects—such effects could
clarify the observed differences.

Studies focusing on metacognition instruction were more effective if
they engaged students in collaboration rather than having students work
on programming tasks individually. This observation is not unknown to
studies in the field of computer programming, and evidence exists
supporting it (Umapathy & Ritzhaupt, 2017). Bernard and Bachu (2015)
argue that collaborative settings (e.g., pair programming) allow students
to explain their thinking, reflect on their strategies, and correct each
other if needed. The benefits of collaboration lie therefore in the pro
motion of metacognitive strategies and awareness.

In sum, only few study, sample, and publication features explained
the variation of effects within and between studies and thus indicated
only a marginal degree of differential effectiveness.

R. Scherer et al.

Computers in Human Behavior 109 (2020) 106349

15

4.3. Limitations and future directions

The current meta-analysis has some limitations worth noting: First,
we categorized the primary studies under condition (3) by their
instructional approaches to computer programming using broad cate
gories. Alternative, more fine-grained categorizations may provide more
detailed information about the differential effectiveness of these ap
proaches, although the available sample sizes in each category may limit
the level of granularity. We therefore encourage researchers to explore
different categorizations. Second, as most studies implemented a
posttest-only design, adjustments for students’ prior programming skills
were largely missing. We believe that pretest-posttest intervention de
signs will draw a more accurate picture of the actual intervention effects
(Shadish, Cook, & Campbell, 2002), and we encourage researchers who
study the effectiveness of programming interventions to implement such
rigorous research designs (e.g., Tsai, 2019). Third, the measures of
programming skills and knowledge were diverse—this diversity may
have contributed to the between-study variation in the intervention ef
fects. The lack of uniform outcome measures in primary studies is a
current challenge for effectiveness studies of programming interventions
(Shute et al., 2017). Fourth, the success of programming interventions
may depend on factors other than the ones examined through moderator
analyses. For instance, Tsai (2019) showed that their visual program
ming intervention was more successful for students with low to mod
erate self-efficacy. Consequently, explaining the mechanisms behind the
effectiveness of certain interventions requires considering such moti
vational and attitudinal factors.

4.4. Conclusions and implications

The present meta-analysis set out to examine the empirical evidence
surrounding the effectiveness of computer programming instruction per
se (study condition 1), the effectiveness of visualization and physicality
(study condition 2), and the effectiveness of instructional approaches
(study condition 3) for fostering students’ programming knowledge and
skills. Several findings surfaced that inform research in this area: First,
the strong positive effect size of programming instruction per se was
expected (g ¼ 0.814) and suggests the trainability of programming
knowledge and skills. This report of an overall effect size provides a
reference point against which future interventions and their effect sizes
could be evaluated (see also Chen et al., 2018; Tsai & Tsai, 2018).

Second, the meta-analysis of studies focusing on visualization or
physicality identified positive overall effect sizes (visualization: g ¼
0.436, physicality: g ¼ 0.718) and supported some of the existing claims
surrounding the effectiveness of modern programming languages such
as Scratch. Surprisingly, visualization was differentially effective across
student samples. Hence, we argue that the context of the instruction and
the change in representation modes of programming languages should
be considered carefully for the specific groups of students (see also
S�aez-L�opez, Rom�an-Gonz�alez, & V�azquez-Cano, 2016). Similarly, pro
gramming tools involving physicality showed large effect sizes than
non-physical ones; once again, although these tendencies may suggest
that these languages and tools may have delivered on their promises,
they need to be backed with further empirical evidence obtained from
carefully designed experimental studies.

Third, apart from these conclusions that may primarily have a sci
entific merit as they generate knowledge about the overall effectiveness
of interventions, the subsequent moderator analyses may have more
practical implications: We did not find evidence for the superiority of
specific interventions, such as collaborative activities, feedback-based
instruction, or game-based learning in programming. Hence, the
claims surrounding their superiority among alternative instructional
approaches could not be fully substantiated for the present, meta-
analytic samples. Educators may therefore choose among them
without losing out on effectiveness yet with considering the suitability
for the specific group of students they are teaching. At the same time, the

evidence on the age specificity of some intervention effects supports the
current attempts to design programming interventions with tools that
are customized for the different age groups of students. The finding that
instructional practices did not differ significantly in their effect sizes
may be a relief to many researchers and educators: First, they may not
have to restrict their teaching to a specific approach but provide stu
dents with different learning experiences and teaching practices. Sec
ond, they may adapt their instructional approaches to the specific
circumstances and conditions of the learning environments and students
without deteriorating the success of the programming instruction. At the
same time, monitoring continuously what works best for learning pro
gramming should become an integral part of the research agenda in this
field. Moreover, the fact that key study design features (e.g., randomi
zation, standardized testing) moderated some of the effects emphasizes
the importance of well-designed experimental studies in order to reduce
the possible methodological bias in effect sizes (see also Mayer, 2015).
We therefore encourage researchers to continue systematically investi
gating the effectiveness of various instructional approaches and condi
tions in well-designed experimental studies and to strive for developing
interventions, tools, and features that make computer programming
accessible to students at different stages of their education.

Acknowledgement

This research was supported by the FINNUT Young Research Talent
Project Grant (NFR-254744 “ADAPT21”) awarded to Ronny Scherer by
The Research Council of Norway.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.chb.2020.106349.

References3

Adams, R. J., Smart, P., & Huff, A. S. (2017). Shades of grey: Guidelines for working with
the grey literature in systematic reviews for management and organizational studies.
International Journal of Management Reviews, 19(4), 432–454. https://doi.org/
10.1111/ijmr.12102.

Afari, E., & Khine, M. S. (2017). Robotics as an educational tool: Impact of Lego
Mindstorms. International Journal of Information and Education Technology, 7(6),
437–442. https://doi.org/10.18178/ijiet.2017.7.6.908.

* Altintas, T., Gunes, A., & Sayan, H. (2016). A peer-assisted learning experience in
computer programming language learning and developing computer programming
skills. Innovations in Education & Teaching International, 53(3), 329–337. https://doi.
org/10.1080/14703297.2014.993418.

Atkinson, L. Z., & Cipriani, A. (2018). How to carry out a literature search for a
systematic review: A practical guide. BJPsych Advances, 24, 74–82. https://doi.org/
10.1192/bja.2017.3.

Au, W. L. (1992). Logo programming: Instructional methods and problem solving (Doctoral
dissertation). New Zealand: Massey University. Retrieved from http://hdl.handle.net
/10179/4122.

Azevedo, R., & Bernard, R. M. (1995). A meta-analysis of the effects of feedback in
computer-based instruction. Journal of Educational Computing Research, 13(2),
111–127. https://doi.org/10.2190/9LMD-3U28-3A0G-FTQT.

Balanskat, A., & Engelhardt, K. (2015). October). Computing our future. Computer
programming and coding: Priorities, school curricula and initiatives across europe.
Brussels: European schoolnet. Retrieved from https://www.researchgate.net/publica
tion/284139559_Computing_our_future_Computer_programming_and_coding_
-_Priorities_school_curricula_and_initiatives_across_Europe. (Accessed 20 January
2020).

* Barak, M., Harward, J., Kocur, G., & Lerman, S. (2007). Transforming an introductory
programming course: From lectures to active learning via wireless laptops. Journal of
Science Education and Technology, 16(4), 325–336. https://doi.org/10.1007/s10956-
007-9055-5.

Batista, A. L. F., Connolly, T., Angotti, J. A., & P.. (2016, October). A framework for
games-based construction learning: A text-based programming languages approach.
Paper presented at the 10th European conference on games based learning, at
paisley, UK. Retrieved from https://search.proquest.com/openview/8a1755d985

3 References marked with an asterisk (*) indicate studies included in the
meta-analysis.

R. Scherer et al.

https://doi.org/10.1016/j.chb.2020.106349
https://doi.org/10.1016/j.chb.2020.106349
https://doi.org/10.1111/ijmr.12102
https://doi.org/10.1111/ijmr.12102
https://doi.org/10.18178/ijiet.2017.7.6.908
https://doi.org/10.1080/14703297.2014.993418
https://doi.org/10.1080/14703297.2014.993418
https://doi.org/10.1192/bja.2017.3
https://doi.org/10.1192/bja.2017.3
http://hdl.handle.net/10179/4122
http://hdl.handle.net/10179/4122
https://doi.org/10.2190/9LMD-3U28-3A0G-FTQT
https://www.researchgate.net/publication/284139559_Computing_our_future_Computer_programming_and_coding_-_Priorities_school_curricula_and_initiatives_across_Europe
https://www.researchgate.net/publication/284139559_Computing_our_future_Computer_programming_and_coding_-_Priorities_school_curricula_and_initiatives_across_Europe
https://www.researchgate.net/publication/284139559_Computing_our_future_Computer_programming_and_coding_-_Priorities_school_curricula_and_initiatives_across_Europe
https://doi.org/10.1007/s10956-007-9055-5
https://doi.org/10.1007/s10956-007-9055-5
https://search.proquest.com/openview/8a1755d985b3545571f3101a9fe45b24/1.pdf?pq-origsite=gscholar&cbl=396495

Computers in Human Behavior 109 (2020) 106349

16

b3545571f3101a9fe45b24/1.pdf?pq-origsite¼gscholar&cbl¼396495. (Accessed 30
July 2018).

Bernard, M., & Bachu, E. (2015). Enhancing the metacognitive skill of novice
programmers through collaborative learning. In A. Pe~na-Ayala (Ed.), Metacognition:
Fundaments, applications, and trends (pp. 277–298). Cham: Springer. https://doi.org/
10.1007/978-3-319-11062-2_11.

Bernard, R. M., Borokhovski, E., Schmid, R. F., Tamim, R. M., & Abrami, P. C. (2014).
A meta-analysis of blended learning and technology use in higher education: From
the general to the applied. Journal of Computing in Higher Education, 26(1), 87–122.
https://doi.org/10.1007/s12528-013-9077-3.

de Boer, H., Donker, A. S., Kostons, D. D. N. M., & van der Werf, G. P. C. (2018). Long-
term effects of metacognitive strategy instruction on student academic performance:
A meta-analysis. Educational Research Review, 24, 98–115. https://doi.org/10.1016/
j.edurev.2018.03.002.

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to
meta-analysis. Chichester, West Sussex: John Wiley & Sons, Ltd.

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the
development of computational thinking. Paper presented at the Annual Meeting of
the American Educational Research Association, Vancouver, Canada. Retrieved from
https://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf.
(Accessed 31 July 2018).

Brown, N. C. C., & Wilson, G. (2018). Ten quick tips for teaching programming. PLoS
Computational Biology, 14(4), 1–8. https://doi.org/10.1371/journal.pcbi.1006023.

Çakiro�glu, Ü., Suiçmez, S. S., et al. (2018). Exploring perceived cognitive load in learning
programming via Scratch. Research in Learning Technology. https://doi.org/
10.25304/rlt.v26.1888.

Card, N. A. (2012). Applied meta-analysis for social science research. New York, NY: The
Guilford Press.

* Carney, R. W. (2000). An evaluation of a method for teaching the transfer of
fundamental computer programming statements between QBASIC and four other
computer programming languages, 9991563 Ed.D.. In Wilmington college (Delaware),
ann arbor. ProQuest Dissertations & Theses A&I database.

* Cetin, I. (2016). Preservice teachers’ introduction to computing: Exploring utilization
of Scratch. Journal of Educational Computing Research, 54(7), 997–1021. https://doi.
org/10.1177/0735633116642774.

* Chao, J. (1999). Effects of structured teaching method on students’ understanding of angle
and rotation in Logo geometry, 9923528 Ph.D. Ann Arbor: ProQuest Dissertations &
Theses A&I database. Arizona State University.

Chauhan, S. (2017). A meta-analysis of the impact of technology on learning
effectiveness of elementary students. Computers & Education, 105, 14–30. https://
doi.org/10.1016/j.compedu.2016.11.005.

Cheng, C., Cheung, M. W.-L., & Wang, H.-y. (2018). Multinational comparison of internet
gaming disorder and psychological problems versus well-being: Meta-analysis of 20
countries. Computers in Human Behavior, 88, 153–167. https://doi.org/10.1016/j.
chb.2018.06.033.

Chen, J., Wang, M., Kischner, P., & Tsai, C.-C. (2018). The role of collaboration,
computer use, learning environments, and supporting strategies in CSCL: A meta-
analysis. Review of Educational Research, 88(6), 799–843. https://doi.org/10.3102/
0034654318791584.

Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-
analyses: A structural equation modeling approach. Psychological Methods, 19(2),
211–229. https://doi.org/10.1037/a0032968.

Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach.
Chichester, West Sussex: John Wiley & Sons, Ltd.

Cheung, A. C. K., & Slavin, R. E. (2013). The effectiveness of educational technology
applications for enhancing mathematics achievement in K-12 classrooms: A meta-
analysis. Educational Research Review, 9, 88–113. https://doi.org/10.1016/j.
edurev.2013.01.001.

Cheung, A. C. K., & Slavin, R. E. (2016). How methodological features affect effect sizes
in education. Educational Researcher, 45(5), 283–292. https://doi.org/10.3102/
0013189X16656615.

Clements, D. H. (1995). Teaching creativity with computers. Educational Psychology
Review, 7(2), 141–161. https://doi.org/10.1007/BF02212491.

Clements, D. H., & Sarama, J. (1997). Research on Logo. Computers in the Schools, 14
(1–2), 9–46. https://doi.org/10.1300/J025v14n01_02.

Costa, J. M., & Miranda, G. L. (2017). Relation between Alice software and programming
learning: A systematic review of the literature and meta-analysis. British Journal of
Educational Technology, 48(6), 1464–1474. https://doi.org/10.1111/bjet.12496.

* Daly, T. (2013). Influence of Alice 3: Reducing the hurdles to success in a CS1 programming
course. Dissertations/Theses - Doctoral Dissertations. University of North Texas.
Available from: Ovid Technologies (3579195).

Denning, P. J. (2017). Remaining trouble spots with computational thinking.
Communications of the ACM, 60(6), 33–39. https://doi.org/10.1145/2998438.

* Denny, P., Cukierman, D., & Bhaskar, J. (2015, November). Measuring the effect of
inventing practice exercises on learning in an introductory programming course.
Paper presented at the Koli Calling Conference on Computing Education Research,
Koli, Finland https://doi.org/10.1145/2828959.2828967.

Di Lieto, M. C., Inguaggiato, E., et al. (2017). Educational robotics intervention on
executive functions in preschool children: A pilot study. Computers in Human
Behavior, 71, 16–23. https://doi.org/10.1016/j.chb.2017.01.018.

Dochy, F., Segers, M., van den Bossche, P., & Gijbels, D. (2003). Effects of problem-based
learning: A meta-analysis. Learning and Instruction, 13, 533–568. https://doi.org/
10.1016/S0959-4752(02)00025-7.

Durlak, J. A., Weissberg, R. P., & Pachan, M. (2010). A meta-analysis of after-school
programs that seek to promote personal and social skills in children and adolescents.

American Journal of Community Psychology, 45(3–4), 294–309. https://doi.org/
10.1007/s10464-010-9300-6.

Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot–based method of
testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2),
455–463. https://doi.org/10.1111/j.0006-341X.2000.00455.x.

Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis
detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/
10.1136/bmj.315.7109.629.

European Commission. (2016). Coding and computational thinking on the curriculum.
Retrieved from https://ec.europa.eu/education/sites/education/files/2016-pla-codi
ng-computational-thinking_en.pdf. (Accessed 30 July 2018).

Fl�orez, F. B., Casallas, R., Hern�andez, M., Reyes, A., Restrepo, S., & Danies, G. (2017).
Changing a generation’s way of thinking: Teaching computational thinking through
programming. Review of Educational Research, 87(4), 834–860. https://doi.org/
10.3102/0034654317710096.

Forsstr€om, S. E., & Kaufmann, O. T. (2018). A literature review exploring the use of
programming in mathematics education. International Journal of Learning, Teaching
and Educational Research, 17(12), 18–32. https://doi.org/10.26803/ijlter.17.12.2.

Garneli, V., Giannakos, M. N., & Chorianopoulos, K. (2015, March). Computing
education in K-12 schools: A review of the literature. IEEE global engineering
education conference (EDUCON), Tallinn, Estonia. https://doi.org/10.1109/
EDUCON.2015.7096023.

Graesser, A. C., Fiore, S. M., Greiff, S., Andrews-Todd, J., Foltz, P. W., & Hesse, F. W.
(2018). Advancing the science of collaborative problem solving. Psychological Science
in the Public Interest, 19(2), 59–92. https://doi.org/10.1177/1529100618808244.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the
field. Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/
0013189x12463051.

* Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended
computer science course for middle school students. Computer Science Education, 25
(2), 199–237. https://doi.org/10.1080/08993408.2015.1033142.

Guzdial, M. (2014). Anyone can learn programming: Teaching > Genetics.
Communications of the ACM [Blog post]. Retrieved from https://cacm.acm.org
/blogs/blog-cacm/179347-anyone-can-learn-programming-teaching-genetics/fullte
xt. (Accessed 2 August 2018). October 14.

Haddaway, N. R., Collins, A. M., Coughlin, D., & Kirk, S. (2015). The role of Google
Scholar in evidence reviews and its applicability to grey literature searching. PloS
One, 10(9), e0138237. https://doi.org/10.1371/journal.pone.0138237.

Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach
computational thinking: Suggestions based on a review of the literature. Computers &
Education, 126, 296–310. https://doi.org/10.1016/j.compedu.2018.07.004.

* Huang, K. H., Yang, T. M., & Cheng, C. C. (2013). Engineering to see and move:
Teaching computer programming with flowcharts vs. LEGO robots. International
Journal of Emerging Technologies in Learning (iJET), 8(4), 23–26. https://doi.org/
10.3991/ijet.v8i4.2943.

International Telecommunication Union (ITU). (2017). Measuring the information society
report (Vol. 1). Geneva: International Telecommunication Union (ITU). Retrieved
from: https://www.itu.int/en/ITU-D/Statistics/Documents/publications/mi
sr2017/MISR2017_Volume1.pdf. (Accessed 15 November 2018).

Jackson, D., & Turner, R. (2017). Power analysis for random-effects meta-analysis.
Research Synthesis Methods, 8(3), 290–302. https://doi.org/10.1002/jrsm.1240.

* Jehng, J.-C. J., & Chan, T.-W. (1998). Designing computer support for collaborative
visual learning in the domain of computer programming. Computers in Human
Behavior, 14(3), 429–448. https://doi.org/10.1016/S0747-5632(98)00015-6.

* Jenkins, C. (2015). Poem generator: A comparative quantitative evaluation of a
microworlds-based learning approach for teaching English. International Journal of
Education and Development Using Information and Communication Technology, 11(2),
153–167. Retrieved from http://ijedict.dec.uwi.edu/viewarticle.php?id¼1972.
(Accessed 2 August 2018).

* Johnson, J., & Kane, K. (1992). Developmental and task factors in Logo programming.
Journal of Educational Computing Research, 8(2), 229–253. https://doi.org/10.2190/
992T-JJDQ-TGX2-04P5.

Kafai, Y. B., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta
Kappan, 95(1), 61–65. https://doi.org/10.1177/003172171309500111.

Kafai, Y. B., & Burke, Q. (2015). Constructionist gaming: Understanding the benefits of
making games for learning. Educational Psychologist, 50(4), 313–344. https://doi.
org/10.1080/00461520.2015.1124022.

* Lai, H., & Xin, W. (2011, December). An experimental research of the pair
programming in Java programming course. Paper presented at the International
Conference on e-Education, Entertainment and e-Management (ICEEE), Bali,
Indonesia https://doi.org/10.1109/ICeEEM.2011.6137800.

Lee, W.-C. (1990). The effectiveness of computer-assisted instruction and computer
programming in elementary and secondary mathematics: A meta-analysis. Doctoral
dissertation (ProQuest No. AAI9022709), university of Massachusetts, Amherst, MA.
Retrieved from https://scholarworks.umass.edu/dissertations/AAI9022709/.

Lee, M. O. C. (1991). Guided instruction with Logo programming and the development of
cognitive monitoring strategies among college students. Doctoral Dissertation
(ProQuest No. 62897250), University of Massachusetts, Amherst, MA. Retrieved
from https://search.proquest.com/docview/62897250?accountid¼14699.

Lee, Y. Y., Mauriello, M. L., Ahn, J., & Bederson, B. B. (2014). CTArcade: Computational
thinking with games in school age children. International Journal of Child-Computer
Interaction, 2, 26–33. https://doi.org/10.1016/j.ijcci.2014.06.003.

* Lehrer, R., Lee, M., & Jeong, A. (1999). Reflective teaching of Logo. The Journal of the
Learning Sciences, 8(2), 245–289. https://doi.org/10.1207/s15327809jls0802_3.

R. Scherer et al.

https://search.proquest.com/openview/8a1755d985b3545571f3101a9fe45b24/1.pdf?pq-origsite=gscholar&cbl=396495
https://doi.org/10.1007/978-3-319-11062-2_11
https://doi.org/10.1007/978-3-319-11062-2_11
https://doi.org/10.1007/s12528-013-9077-3
https://doi.org/10.1016/j.edurev.2018.03.002
https://doi.org/10.1016/j.edurev.2018.03.002
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref14
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref14
https://web.media.mit.edu/%7Ekbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
https://doi.org/10.1371/journal.pcbi.1006023
https://doi.org/10.25304/rlt.v26.1888
https://doi.org/10.25304/rlt.v26.1888
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref19
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref19
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref20
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref20
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref20
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref20
https://doi.org/10.1177/0735633116642774
https://doi.org/10.1177/0735633116642774
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref22
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref22
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref22
https://doi.org/10.1016/j.compedu.2016.11.005
https://doi.org/10.1016/j.compedu.2016.11.005
https://doi.org/10.1016/j.chb.2018.06.033
https://doi.org/10.1016/j.chb.2018.06.033
https://doi.org/10.3102/0034654318791584
https://doi.org/10.3102/0034654318791584
https://doi.org/10.1037/a0032968
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref27
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref27
https://doi.org/10.1016/j.edurev.2013.01.001
https://doi.org/10.1016/j.edurev.2013.01.001
https://doi.org/10.3102/0013189X16656615
https://doi.org/10.3102/0013189X16656615
https://doi.org/10.1007/BF02212491
https://doi.org/10.1300/J025v14n01_02
https://doi.org/10.1111/bjet.12496
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref33
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref33
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref33
https://doi.org/10.1145/2998438
https://doi.org/10.1145/2828959.2828967
https://doi.org/10.1016/j.chb.2017.01.018
https://doi.org/10.1016/S0959-4752(02)00025-7
https://doi.org/10.1016/S0959-4752(02)00025-7
https://doi.org/10.1007/s10464-010-9300-6
https://doi.org/10.1007/s10464-010-9300-6
https://doi.org/10.1111/j.0006-341X.2000.00455.x
https://doi.org/10.1136/bmj.315.7109.629
https://doi.org/10.1136/bmj.315.7109.629
https://ec.europa.eu/education/sites/education/files/2016-pla-coding-computational-thinking_en.pdf
https://ec.europa.eu/education/sites/education/files/2016-pla-coding-computational-thinking_en.pdf
https://doi.org/10.3102/0034654317710096
https://doi.org/10.3102/0034654317710096
https://doi.org/10.26803/ijlter.17.12.2
https://doi.org/10.1109/EDUCON.2015.7096023
https://doi.org/10.1109/EDUCON.2015.7096023
https://doi.org/10.1177/1529100618808244
https://doi.org/10.3102/0013189x12463051
https://doi.org/10.3102/0013189x12463051
https://doi.org/10.1080/08993408.2015.1033142
https://cacm.acm.org/blogs/blog-cacm/179347-anyone-can-learn-programming-teaching-genetics/fulltext
https://cacm.acm.org/blogs/blog-cacm/179347-anyone-can-learn-programming-teaching-genetics/fulltext
https://cacm.acm.org/blogs/blog-cacm/179347-anyone-can-learn-programming-teaching-genetics/fulltext
https://doi.org/10.1371/journal.pone.0138237
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.3991/ijet.v8i4.2943
https://doi.org/10.3991/ijet.v8i4.2943
https://www.itu.int/en/ITU-D/Statistics/Documents/publications/misr2017/MISR2017_Volume1.pdf
https://www.itu.int/en/ITU-D/Statistics/Documents/publications/misr2017/MISR2017_Volume1.pdf
https://doi.org/10.1002/jrsm.1240
https://doi.org/10.1016/S0747-5632(98)00015-6
http://ijedict.dec.uwi.edu/viewarticle.php?id=1972
https://doi.org/10.2190/992T-JJDQ-TGX2-04P5
https://doi.org/10.2190/992T-JJDQ-TGX2-04P5
https://doi.org/10.1177/003172171309500111
https://doi.org/10.1080/00461520.2015.1124022
https://doi.org/10.1080/00461520.2015.1124022
https://doi.org/10.1109/ICeEEM.2011.6137800
https://scholarworks.umass.edu/dissertations/AAI9022709/
https://search.proquest.com/docview/62897250?accountid=14699
https://doi.org/10.1016/j.ijcci.2014.06.003
https://doi.org/10.1207/s15327809jls0802_3

Computers in Human Behavior 109 (2020) 106349

17

Liao, Y.-K. C., & Bright, G. W. (1991). Effects of computer programming on cognitive
outcomes: A meta-analysis. Journal of Educational Computing Research, 7(3),
251–268. https://doi.org/10.2190/e53g-hh8k-ajrr-k69m.

Liao, Y.-k. C. (2000). A meta-analysis of computer programming on cognitive outcomes:
An updated synthesis. In Paper presented at the Proceedings of World Conference on
Educational Multimedia. Montreal, Canada: Hypermedia and Telecommunications.

Li, Q., & Ma, X. (2010). A meta-analysis of the effects of computer technology on school
students’ mathematics learning. Educational Psychology Review, 22, 215–243.
https://doi.org/10.1007/s10648-010-9125-8.

Lipsey, M. W., & Wilson, D. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage.
Lito, A. T. (2017). Robotics interventions for improving educational outcomes—a meta-

analysis. University of Io�annina, School of Education, Greece. Retrieved from http
://olympias.lib.uoi.gr/jspui/bitstream/123456789/28575/1/%CE%9C.%CE%95.%
20%CE%91%CE%98%CE%91%CE%9D%CE%91%CE%A3%CE%99%CE%9F%CE%
A5%20%CE%9B%CE%97%CE%A4%CE%A9%202017.pdf.

* Liu, A. S., Schunn, C. D., Flot, J., & Shoop, R. (2013). The role of physicality in rich
programming environments. Computer Science Education, 23(4), 315–331. https://
doi.org/10.1080/08993408.2013.847165.

Lou, Y., Abrami, P. C., & d’Apollonia, S. (2001). Small group and individual learning
with technology: A meta-analysis. Review of Educational Research, 71(3), 449–521.
https://doi.org/10.3102/00346543071003449.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-12? Computers in Human Behavior,
41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012.

Macnamara, B. N., Hambrick, D. Z., & Oswald, F. L. (2014). Deliberate practice and
performance in music, games, sports, education, and professions: A meta-analysis.
Psychological Science, 25(8), 1608–1618. https://doi.org/10.1177/
0956797614535810.

* Mason, R., & Cooper, G. (2013). Mindstorms robots and the application of cognitive
load theory in introdictory programming. Computer Science Education, 23(4),
296–314. https://doi.org/10.1080/08993408.2013.847152.

Mayer, R. E. (2015). On the need for research evidence to guide the design of computer
games for learning. Educational Psychologist, 50(4), 349–353. https://doi.org/
10.1080/00461520.2015.1133307.

* Milner, S. (1973). The effects of computer programming on performance in
mathematics. In Paper presented at the annual meeting of the American educational
research association (New Orleans, Louisiana).

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., The Prisma Group, et al. (2009).
Preferred reporting items for systematic reviews and meta-analyses: The PRISMA
statement. PLoS Medicine, 6(7), 1–6. https://doi.org/10.1371/journal.
pmed.1000097.

Moreno-Le�on, J., & Robles, G. (2016). April). Code to learn with Scratch? A systematic
literature review. IEEE global engineering education conference (EDUCON), Abu
Dhabi, United Arab Emirates. https://doi.org/10.1109/EDUCON.2016.7474546.

Morris, S. B. (2008). Estimating effect sizes from pretest-posttest-control group designs.
Organizational Research Methods, 11(2), 364–386. https://doi.org/10.1177/
1094428106291059.

* Nugent, G., Barker, B., Grandgenett, N., & Adamchuk, V. I. (2010). Impact of robotics
and geospatial technology interventions on youth STEM learning and attitudes.
Journal of Research on Technology in Education, 42(4), 391–408. https://doi.org/
10.1080/15391523.2010.10782557.

Nurulain Mohd Rum, S., & Zolkepli, M. (2018). Metacognitive strategies in teaching and
learning computer programming. International Journal of Engineering & Technology, 7,
788–794. https://doi.org/10.14419/ijet.v7i4.38.27546.

OECD. (2013). PISA 2012 results: Ready to learn: Students’ engagement, drive and self-
beliefs (volume III). Paris. OECD Publishing https://doi.org/10.1787/9789264
201170-en.

OECD. (2017). PISA 2015 results: Collaborative problem solving (Vol. V). Paris: OECD
Publishing. https://doi.org/10.1787/9789264285521-en.

* Olelewe, C. J., & Agomuo, E. E. (2016). Effects of B-learning and F2F learning
environments on students’ achievement in QBASIC programming. Computers &
Education, 103, 76–86. https://doi.org/10.1016/j.compedu.2016.09.012.

* Oprea, J. M. (1984). The effects of computer programming on a student’s mathematical
generalization and understanding of variables, 8504061 Ph.D. Ann Arbor: ProQuest
Dissertations & Theses A&I database. The Ohio State University.

Palumbo, D. B. (1990). programming language/problem-solving research: A review of
relevant issues. Review of Educational Research, 60(1), 65–89. https://doi.org/
10.3102/00346543060001065.

* Psycharis, S., & Kallia, M. (2017). The effects of computer programming on high school
students’ reasoning skills and mathematical self-efficacy and problem solving.
Instructional Science, 45(5), 583–602. https://doi.org/10.1007/s11251-017-9421-5.

Robins, A., Rountree, J., & Rountree, A. (2003). Learning and teaching programming: A
review and discussion. Computer Science Education, 13(2), 137–172. https://doi.org/
10.1076/csed.13.2.137.14200.

* Rodríguez Corral, J. M., Civit Balcells, A., Morgado Est�evez, A., Jim�enez Moreno, G., &
Ferreiro Ramos, M. J. (2014). A game-based approach to the teaching of object-
oriented programming languages. Computers & Education, 73, 83–92. https://doi.
org/10.1016/j.compedu.2013.12.013.

* Rodríguez Corral, J. M., Civit, A., Perez-Pe~na, F., & Molina, D. (2016). Application of
robot programming to the teaching of object-oriented computer languages.
International Journal of Engineering Education, 32(4), 1823–1832.

S�aez-L�opez, J.-M., Rom�an-Gonz�alez, M., & V�azquez-Cano, E. (2016). Visual
programming languages integrated across the curriculum in elementary school: A
two year case study using “Scratch” in five schools. Computers & Education, 97,
129–141. https://doi.org/10.1016/j.compedu.2016.03.003.

Scherer, R. (2016). Learning from the past – the need for empirical evidence on the
transfer effects of computer programming skills. Frontiers in Psychology, 7(1390).
https://doi.org/10.3389/fpsyg.2016.01390.

Scherer, R., Siddiq, F., & S�anchez Viveros, B. (2019). The cognitive benefits of learning
computer programming: A meta-analysis of transfer effects. Journal of Educational
Psychology, 111(5), 764–792. https://doi.org/10.1037/edu0000314.

Schmidt, F. L., & Hunter, J. E. (2014). Methods of meta-analysis: Correcting error and bias in
research findings (3 ed.). Thousand Oaks, CA: Sage.

Schmucker, C. M., Blümle, A., Schell, L. K., Schwarzer, G., Oeller, P.Cabrera, L., …
(2017). Systematic review finds that study data not published in full text articles
have unclear impact on meta-analyses results in medical research. on behalf of the,
O. c PloS One, 12(4), 1–16. https://doi.org/10.1371/journal.pone.0176210.

Sengupta, P., Dickes, A., Voss Farris, A., Martin, D., & Wright, M. (2015). Programming
in K-12 science classrooms. Communications of the ACM, 58(11), 34–35. https://doi.
org/10.1145/2822517.

* Shadiev, R., Hwang, W.-Y., Yeh, S.-C., Yang, S. J. H., Wang, J.-L., Han, L., et al. (2014).
Effects of unidirectional vs. Reciprocal teaching strategies on web-based computer
programming learning. Journal of Educational Computing Research, 50(1), 67–95.
https://doi.org/10.2190/EC.50.1.d.

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-
experimental designs for generalized causal inference. Boston, MA: Houghton Mifflin.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.
Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.
edurev.2017.09.003.

* Shyr, W.-J. (2010). Multiprog virtual laboratory applied to PLC programming learning.
European Journal of Engineering Education, 35(5), 573–583. https://doi.org/10.1080/
03043797.2010.497550.

Siddiq, F., & Scherer, R. (2017). Revealing the processes of students’ interaction with a
novel collaborative problem solving task: An in-depth analysis of think-aloud
protocols. Computers in Human Behavior, 76, 509–525. https://doi.org/10.1016/j.
chb.2017.08.007.

Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2014). P-curve: A key to the file-Drawer.
Journal of Experimental Psychology: General, 143(2), 534–547. https://doi.org/
10.1037/a0033242.

Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2017). P-curve online App version 4.06.
http://www.p-curve.com/app4/.

* Siozou, S., Tselios, N., & Komis, V. (2008). Effect of algorithms’ multiple
representations in the context of programming education. Interactive Technology and
Smart Education, 5(4), 230–243.

Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects of small-group learning on
undergraduates in science, mathematics, engineering, and technology: A meta-
analysis. Review of Educational Research, 69(1), 21–51. https://doi.org/10.3102/
00346543069001021.

Sung, Y.-T., Chang, K.-E., & Liu, T.-C. (2016). The effects of integrating mobile devices
with teaching and learning on students‘ learning performance: A meta-analysis and
research synthesis. Computers & Education, 94, 252–275. https://doi.org/10.1016/j.
compedu.2015.11.008.

* Suomala, J., & Alajaaski, J. (2002). Pupils’ problem-solving processes in a complex
computerized learning environment. Journal of Educational Computing Research, 26
(2), 155–176. https://doi.org/10.2190/58XD-NMFK-DL5V-0B6N.

Tsai, C.-Y. (2019). Improving students’ understanding of basic programming concepts
through visual programming language: The role of self-efficacy. Computers in Human
Behavior, 95, 224–232. https://doi.org/10.1016/j.chb.2018.11.038.

Tsai, Y.-L., & Tsai, C.-C. (2018). Digital game-based second-language vocabulary learning
and conditions of research designs: A meta-analysis study. Computers & Education,
125, 345–357. https://doi.org/10.1016/j.compedu.2018.06.020.

Umapathy, K., & Ritzhaupt, A. D. (2017). A meta-analysis of pair-programming in
computer programming courses: Implications for educational practice. ACM
Transactions on Computing Education, 17(4), 1–13. https://doi.org/10.1145/
2996201.

UNESCO Institute for Statistics. (2018). A global framework of reference on digital
literacy skills for indicator 4.4.2. Information Paper No. 51 (UIS/2018/ICT/IP/51).
Montr�eal, Canada, QC. UNESCO Institute for Statistics. Retrieved from: http://uis.
unesco.org/sites/default/files/documents/ip51-global-framework-reference-digita
l-literacy-skills-2018-en.pdf. (Accessed 15 November 2018).

* Uysal, M. P. (2014). Improving first computer programming experiences: The case of
adapting a web-supported and well-structured problem-solving method to a
traditional course. Contemporary Educational Technology, 5(3), 198–217.

Valentine, J. C. (2019). Incorporating judgments about study quality into research
syntheses. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of
research syntheses and meta-analyses (3rd ed., pp. 129–140). New York, NY: Russell
Sage Foundation.

Valentine, J. C., Pigott, T. D., & Rothstein, H. R. (2010). How many studies do you need?:
A primer on statistical power for meta-analysis. Journal of Educational and Behavioral
Statistics, 35(2), 215–247. https://doi.org/10.3102/1076998609346961.

Viechtbauer, W. (2005). Bias and efficiency of meta-analytic variance estimators in the
random-effects model. Journal of Educational and Behavioral Statistics, 30(3),
261–293. https://doi.org/10.3102/10769986030003261.

Viechtbauer, W. (2017). Metafor: Meta-Analysis package for R. R package version 2.0-0.
Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-

analysis. Research Synthesis Methods, 1(2), 112–125. https://doi.org/10.1002/
jrsm.11.

Vihavainen, A., Airaksinen, J., & Watson, J. (2014, August). A systematic review of
approaches for teaching introductory programming and their influence on success.
Proceedings of the Tenth Annual conference on international computing education
research (ICER), glasgow, UK. https://doi.org/10.1145/2632320.2632349.

R. Scherer et al.

https://doi.org/10.2190/e53g-hh8k-ajrr-k69m
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref1263
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref1263
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref1263
https://doi.org/10.1007/s10648-010-9125-8
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref66
http://olympias.lib.uoi.gr/jspui/bitstream/123456789/28575/1/%CE%9C.%CE%95.%20%CE%91%CE%98%CE%91%CE%9D%CE%91%CE%A3%CE%99%CE%9F%CE%A5%20%CE%9B%CE%97%CE%A4%CE%A9%202017.pdf
http://olympias.lib.uoi.gr/jspui/bitstream/123456789/28575/1/%CE%9C.%CE%95.%20%CE%91%CE%98%CE%91%CE%9D%CE%91%CE%A3%CE%99%CE%9F%CE%A5%20%CE%9B%CE%97%CE%A4%CE%A9%202017.pdf
http://olympias.lib.uoi.gr/jspui/bitstream/123456789/28575/1/%CE%9C.%CE%95.%20%CE%91%CE%98%CE%91%CE%9D%CE%91%CE%A3%CE%99%CE%9F%CE%A5%20%CE%9B%CE%97%CE%A4%CE%A9%202017.pdf
http://olympias.lib.uoi.gr/jspui/bitstream/123456789/28575/1/%CE%9C.%CE%95.%20%CE%91%CE%98%CE%91%CE%9D%CE%91%CE%A3%CE%99%CE%9F%CE%A5%20%CE%9B%CE%97%CE%A4%CE%A9%202017.pdf
https://doi.org/10.1080/08993408.2013.847165
https://doi.org/10.1080/08993408.2013.847165
https://doi.org/10.3102/00346543071003449
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1177/0956797614535810
https://doi.org/10.1177/0956797614535810
https://doi.org/10.1080/08993408.2013.847152
https://doi.org/10.1080/00461520.2015.1133307
https://doi.org/10.1080/00461520.2015.1133307
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref74
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref74
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref74
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1109/EDUCON.2016.7474546
https://doi.org/10.1177/1094428106291059
https://doi.org/10.1177/1094428106291059
https://doi.org/10.1080/15391523.2010.10782557
https://doi.org/10.1080/15391523.2010.10782557
https://doi.org/10.14419/ijet.v7i4.38.27546
https://doi.org/10.1787/9789264201170-en
https://doi.org/10.1787/9789264201170-en
https://doi.org/10.1787/9789264285521-en
https://doi.org/10.1016/j.compedu.2016.09.012
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref83
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref83
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref83
https://doi.org/10.3102/00346543060001065
https://doi.org/10.3102/00346543060001065
https://doi.org/10.1007/s11251-017-9421-5
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1016/j.compedu.2013.12.013
https://doi.org/10.1016/j.compedu.2013.12.013
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref88
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref88
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref88
https://doi.org/10.1016/j.compedu.2016.03.003
https://doi.org/10.3389/fpsyg.2016.01390
https://doi.org/10.1037/edu0000314
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref93
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref93
https://doi.org/10.1371/journal.pone.0176210
https://doi.org/10.1145/2822517
https://doi.org/10.1145/2822517
https://doi.org/10.2190/EC.50.1.d
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref97
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref97
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1080/03043797.2010.497550
https://doi.org/10.1080/03043797.2010.497550
https://doi.org/10.1016/j.chb.2017.08.007
https://doi.org/10.1016/j.chb.2017.08.007
https://doi.org/10.1037/a0033242
https://doi.org/10.1037/a0033242
http://www.p-curve.com/app4/
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref103
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref103
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref103
https://doi.org/10.3102/00346543069001021
https://doi.org/10.3102/00346543069001021
https://doi.org/10.1016/j.compedu.2015.11.008
https://doi.org/10.1016/j.compedu.2015.11.008
https://doi.org/10.2190/58XD-NMFK-DL5V-0B6N
https://doi.org/10.1016/j.chb.2018.11.038
https://doi.org/10.1016/j.compedu.2018.06.020
https://doi.org/10.1145/2996201
https://doi.org/10.1145/2996201
http://uis.unesco.org/sites/default/files/documents/ip51-global-framework-reference-digital-literacy-skills-2018-en.pdf
http://uis.unesco.org/sites/default/files/documents/ip51-global-framework-reference-digital-literacy-skills-2018-en.pdf
http://uis.unesco.org/sites/default/files/documents/ip51-global-framework-reference-digital-literacy-skills-2018-en.pdf
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref113
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref113
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref113
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref114
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref114
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref114
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref114
https://doi.org/10.3102/1076998609346961
https://doi.org/10.3102/10769986030003261
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref117
https://doi.org/10.1002/jrsm.11
https://doi.org/10.1002/jrsm.11
https://doi.org/10.1145/2632320.2632349

Computers in Human Behavior 109 (2020) 106349

18

* Volet, S., & Lund, C. (1994). Metacognitive instruction in introductory computer
programming: A better explanatory construct for performance than traditional
factors. Journal of Educational Computing Research, 10(4), 297–328. https://doi.org/
10.2190/9A08-Y2Q0-6AER-6KLQ.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
https://doi.org/10.1145/1118178.1118215.

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational thinking as an
emerging competence domain. In M. Mulder (Ed.), Competence-based vocational and
professional education: Bridging the worlds of work and education (pp. 1051–1067).
Cham: Springer International Publishing.

* Yang, T.-C., Hwang, G.-J., Yang, S. J. H., & Hwang, G.-H. (2015). A two-Tier test-based
approach to improving students’ computer-programming skills in a web-based
learning environment. Educational Technology & Society, 18(1), 198–210.

Young, J. (2017). Technology-enhanced mathematics instruction: A second-order meta-
analysis of 30 years of research. Educational Research Review, 22, 19–33. https://doi.
org/10.1016/j.edurev.2017.07.001.

* Yüksel, H., & Yüksel, A. (2015). The effect of the computer assisted instruction on the
academic achievement and retention of technical programme students’ in vocational
foreign language. Procedia—Social and Behavioral Sciences, 174, 2513–2518. https://
doi.org/10.1016/j.sbspro.2015.01.924.

R. Scherer et al.

https://doi.org/10.2190/9A08-Y2Q0-6AER-6KLQ
https://doi.org/10.2190/9A08-Y2Q0-6AER-6KLQ
https://doi.org/10.1145/1118178.1118215
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref122
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref122
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref122
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref122
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref123
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref123
http://refhub.elsevier.com/S0747-5632(20)30102-3/sref123
https://doi.org/10.1016/j.edurev.2017.07.001
https://doi.org/10.1016/j.edurev.2017.07.001
https://doi.org/10.1016/j.sbspro.2015.01.924
https://doi.org/10.1016/j.sbspro.2015.01.924

	A meta-analysis of teaching and learning computer programming: Effective instructional approaches and conditions
	1 Introduction
	1.1 Anchoring computer programming in the concept of computational thinking
	1.2 Approaches and conditions of computer programming instruction
	1.3 Framework for the present meta-analysis
	1.4 The present meta-analysis

	2 Method
	2.1 Literature search
	2.2 Screening and eligibility criteria
	2.3 Effect size measures
	2.4 Coding of studies
	2.5 Statistical analyses
	2.6 Publication bias, influential effect sizes, and sensitivity analyses

	3 Results
	3.1 Description of studies
	3.2 P-curve and influential effect sizes
	3.3 Effectiveness of programming interventions per Se (RQ1)
	3.4 Effectiveness of visualization and physicality (RQ2)
	3.4.1 Moderator analyses2

	3.5 Effectiveness of instructional approaches (RQ3)
	3.5.1 Baseline models

	4 Discussion
	4.1 Effectiveness of computer programming interventions in the three conditions
	4.2 Contextual variables explaining variation in the intervention effects
	4.3 Limitations and future directions
	4.4 Conclusions and implications

	Acknowledgement
	Appendix A Supplementary data
	References3References marked with an asterisk (*) indicate studies included in the meta-analysis.3

