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A B S T R A C T   

This meta-analysis maps the evidence on the effectiveness of instructional approaches and conditions for learning 
computer programming under three study conditions: (a) Studies focusing on the effectiveness of programming 
interventions per se, (b) studies focusing on the effectiveness of visualization and physicality, and (c) studies 
focusing on the effectiveness of dominant instructional approaches. Utilizing the data from 139 interventions and 
375 effect sizes, we found (a) a strong effect of learning computer programming per se (Hedges’ g ¼ 0.81, 95% CI 
[0.42, 1.21]), (b) moderate to large effect sizes of visualization (g ¼ 0.44, 95% CI [0.29, 0.58]) and physicality 
interventions (g ¼ 0.72, 95% CI [0.23, 1.21]), and (c) moderate to large effect sizes for studies focusing on 
dominant instructional approaches (gs ¼ 0.49–1.02). Moderator analyses indicated that the effect sizes differed 
only marginally between the instructional approaches and conditions—however, collaboration in metacognition 
instruction, problem solving instruction outside of regular lessons, short-term interventions focusing on physi
cality, and interventions focusing on visualization through Scratch were especially effective. Our meta-analysis 
synthesizes the existing research evidence on the effectiveness of computer programming instruction and, ulti
mately, provides references with which the effects of future studies could be compared.   

1. Introduction 

Computer programming has regained considerable attention over 
the last decade, not only because of the rapid technological de
velopments but also because it is claimed to foster other skills, including 
problem solving, logical thinking, and creativity (Liao & Bright, 1991; 
Scherer, 2016). Moreover, educational systems around the world are in 
the process of developing curricula that implement programming and 
so-called computational thinking—a concept that contextualizes com
puter programming and related skills as a form of problem solving 
(Shute, Sun, & Asbell-Clark, 2017)—either as a standalone subject or 
integrated in other subjects (European Commission, 2016; Yadav, Good, 
Voogt, & Fisser, 2017). Whereas the importance of computer program
ming has been widely recognized, the systematic evaluation of the 
effectiveness of instructional approaches and conditions fostering the 
acquisition of programming knowledge and skills has received little 
attention (Grover & Pea, 2013; Lye & Koh, 2014). 

Besides, the existing body of literature abounds in diverse instruc

tional approaches, focusing on the use of specific programming tools 
(Fl�orez et al., 2017), ways to facilitate the understanding of computa
tional concepts and the acquisition of information processing along with 
metacognitive skills (Lye & Koh, 2014), the benefits of pair program
ming over individual programming (Umapathy & Ritzhaupt, 2017), and 
the setup of programming courses, including the effects of blended and 
project-based learning (Hsu, Chang, & Hung, 2018; Vihavainen, Air
aksinen, & Watson, 2014)—just to name a few. These different foci have 
inevitably led to diverse findings concerning the effectiveness of certain 
instructional approaches and conditions. For instance, whereas Lou, 
Abrami, and d’Apollonia (2001) found weak effects of collaborative 
learning with technology, including computer programming, on indi
vidual and group performance (Cohen’s d ¼ 0.15–0.31), Umapathy and 
Ritzhaupt (2017) identified moderate to strong effects (Hedges’ g ¼
0.41–0.64). Moreover, whereas Yüksel and Yüksel (2015) obtained 
strong effects of teaching programming through problem solving (g >
1.00), Denny, Cukierman, and Bhaskar (2015) testified to only small 
effects (g ¼ 0.27). The list of studies and diverse findings could be 
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extended easily—overall, these examples suggest that the effectiveness 
of programming instruction varies considerably across studies. 

With more computer science educators interested in making pro
gramming accessible to young students, learning programming through 
game design, robotics, and with visual instead of text-based languages is 
expected to be more effective than other approaches (e.g., Batista, 
Connolly, & Angotti, 2016; Lee, Mauriello, Ahn, & Bederson, 2014; Lye 
& Koh, 2014). However, the existing body of research has not yet pro
vided sufficient evidence supporting these expectations (Fl�orez et al., 
2017; Scherer, 2016). So, what are effective approaches and conditions 
for teaching and learning computer programming? This meta-analysis is 
aimed at providing some answers to this question by synthesizing the 
evidence from experimental and quasi-experimental studies targeted at 
improving students’ programming knowledge and skills. Specifically, 
using the framework for reviewing the effectiveness of educational 
technology proposed by Chen, Wang, Kirschner, and Tsai (2018), we 
distinguish between three categories of primary studies to examine three 
aspects of effectiveness and ultimately map the field of programming 
instruction (Fig. 1): (a) Studies that reported the effectiveness of 
learning computer programming per se (i.e., with control groups that 
did not engage in any programming activity), (b) Studies that reported 
the effectiveness of visualization and physicality during programming (e. 
g., visual programming languages such as Scratch, involvement of ro
botics), and (c) Studies that reported the effectiveness of dominant 
instructional approaches (e.g., programming instruction focusing on 
metacognition, game-based learning, collaboration, feedback). For these 
three categories, we estimate the overall intervention effect sizes on 
performance-based outcome variables—that is, measures of program
ming knowledge and skills—through multiple, separate meta-analyses 
and quantify the variation of effects within and across studies. Further 
moderator analyses are conducted to explain this variation by contex
tual variables. Overall, our research synthesis provides information 
about whether instructional approaches and conditions have fulfilled 
the expectations associated with their effectiveness for learning com
puter programming. 

1.1. Anchoring computer programming in the concept of computational 
thinking 

Computer programming is defined as the “process of developing and 
implementing various sets of instructions to enable a computer to 
perform a certain task, solve problems, and provide human inter
activity” (Balanskat & Engelhardt, 2015, p. 7). Thus, in addition to 
having knowledge of programming languages, expertise in subjects 
related to the development of specialized algorithms and logic, and the 

ability to analyze, understand, and solve problems in an iterative process 
are required (Forsstr€om & Kaufmann, 2018). The processes involved in 
programming are therefore largely similar to those involved in 
problem-solving, such as decomposing problems, applying algorithms, 
abstracting, and automatizing (Shute, Sun, & Asbell-Clarke, 2017; 
Yadav et al., 2017). 

In their seminal review, Lye and Koh (2014) argued that computer 
programming “exposes students to computational thinking which in
volves problem-solving using computer science concepts like abstraction 
and decomposition.” (p. 51). Ultimately, the authors concluded that 
fostering the skills involved in programming will also enhance the skills 
involved in computational thinking. Despite its criticism (Denning, 
2017), the concept of computational thinking has found its way in 
existing computer science curricula, teacher education programs, and 
research agendas (Grover & Pea, 2013). Wing (2006) broadly defined 
computational thinking as a concept that “involves solving problems, 
designing systems, and understanding human behavior, by drawing on 
the concepts fundamental to computer science” (p. 33). Drawing on this 
definition and subsequent specifications of the very concepts that are 
‘fundamental to computer science”, Shute et al. (2017) named the key 
processes involved in computational thinking—problem (re-)formula
tion, recursion, decomposition, abstraction, and systematic testing of 
solutions and procedures. In light of these processes, the authors argued 
that computational thinking can be considered a form of problem 
solving in technology-rich contexts. 

Although the processes involved and the skills required in computer 
programming are those involved and required in computational 
thinking (Lye & Koh, 2014), the latter involves more than programming. 
In their influential framework, Brennan and Resnick (2012) outlined 
three key areas of computational thinking: Computational concepts (i.e., 
concepts used by programmers, such as sequences and loops), compu
tational practices (i.e., problem-solving processes during programming, 
such as testing and debugging), and computational perspectives (i.e., 
students’ understanding of themselves and their interaction with others 
and with technology, such as questioning technology as a means to solve 
real-life problems). Whereas computational concepts and practices play 
a critical role in programming, the latter—taking computational per
spectives as a way to computational participation—represents a dis
tinguishing feature of computational thinking (Kafai & Burke, 2013; 
Shute et al., 2017). Programming is considered a way of teaching and 
learning computational thinking—in other words, learning to program a 
computer can ultimately aid the acquisition of computational thinking 
skills (Fl�orez et al., 2017). 

Given the limited focus of intervention studies on computational 
perspectives (Lye & Koh, 2014), the current series of meta-analysis 

Fig. 1. Conceptual framework of the present meta-analysis.  
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focuses on the computational concepts and practices, labelled as pro
gramming knowledge and skills. Programming knowledge, in this 
respect, comprises the conceptual and procedural knowledge needed to 
solve problems computationally (i.e., syntactic, semantic, schematic, 
and strategic knowledge). Programming skills comprise the skills to 
create, modify, and evaluate computer code. 

1.2. Approaches and conditions of computer programming instruction 

In their recent article, Brown and Wilson (2018) reviewed the role of 
computer programming for computational biology and concluded that, 
in light of the extant literature on programming instruction, “compe
tence at programming is not innate but is rather a learned skill that can 
be acquired and improved with practice” (p. 1). Based on this assump
tion that programming knowledge and skills can be taught effectively, 
several instructional approaches have been proposed and evaluated over 
the last decades—yet, with varying foci and degrees of success (Grover & 
Pea, 2013; Robins, Rountree, & Rountree, 2003). 

In the early studies from the 1980s and 1990s, programming in
struction with the Logo language was in the main focus. After a myriad 
of experimental and quasi-experimental studies had been conducted, the 
evidence base on the effectiveness of different instructional approaches 
was diverse. Whereas some studies found teacher-directed instruction to 
be more effective than discovery learning (Lee, 1991), others found the 
opposite effect (see Clements, 1995 for an overview). Palumbo (1990) 
consequently argued that key study design features, such as the type of 
programming language and the length of the intervention, should be 
considered to explain these varying effects. The context and tool 
dependence of effective programming instruction seems evident. 

Reviewing the existing literature on K-12 computing education for 
the newer studies, Garneli, Giannakos, and Chorianopoulos (2015) 
highlighted several focus areas intervention studies have engaged 
in—these areas included examining the importance of programming 
tools, educational contexts, and instructional methods. The authors also 
emphasized the growing popularity of game design and robotics in
struction, project-based interventions, and interventions that involve 
collaboration and the use of physical objects to determine the outcome 
of certain programming tasks. Garneli et al. (2015) concluded that 
implementing computing education in K-12 instruction can be “enjoy
able and effective”—however, empirical evidence supporting these ex
pectations is still scarce (Grover & Pea, 2013; Scherer, 2016). Lye and 
Koh (2014) consequently called for exploring more classroom in
terventions of computer programming to enrich the existing knowledge 
base of ‘what works and what doesn’t’. Reviewing the effectiveness of 
teaching introductory programming for course pass rates, Vihavainen 
et al. (2014) identified core intervention programs. These programs 
included collaboration and peer support, relatable content and contex
tualization, assessment procedures, course setup, and resourcing. The 
authors synthesized the effect sizes resulting from intervention studies 
that focused on at least one of these programs and found an overall 
positive effect suggesting that pass rates could be improved up to 40% 
compared to traditional lecture- and lab-based courses. At the same 
time, Vihavainen et al. (2014) acknowledged that these improvements 
vary across instructional approaches and that a combination of multiple 
approaches may be most effective for teaching programming. Fl�orez 
et al. (2017) concurred with this conclusion and further pointed out the 
importance of collaboration and peer support as well as the use of 
visualization tools to help students develop and explicate their mental 
models about programming concepts. Next to these trends in interven
tion studies to foster the teaching and learning of computer program
ming, several other programs exist, which focus, for instance, on the 
benefits of blended learning over face-to-face learning, the effectiveness 
of problem-solving instruction, feedback, and the fostering of meta
cognitive skills (for an overview and example studies, please refer to 
Table 2). 

Overall, our review of the extant literature revealed that (a) diverse 

instructional approaches to fostering computer programming exist; (b) 
several intervention programs are effective in fostering programming 
knowledge and skills; (c) the effectiveness of intervention programs may 
vary across studies and instructional conditions (see also Li & Ma, 2010). 
In fact, existing studies indicated that the effectiveness of programming 
interventions depend on the context they are placed in. Kafai and Burke 
(2015), for example, noted the relevance of the intervention length that 
may range between some hours and several months and the integration 
of the intervention in short-term coding camps, extracurricular activ
ities, or regular school lessons. Despite this diversity, some core pro
grams seem to reoccur, such as the effectiveness of certain programming 
tools and collaboration (Hsu et al., 2018). 

Visual programming tools. A considerable number of studies 
focused on the effectiveness of certain programming tools over alter
native tools. For instance, Lee (1990), in an early meta-analysis, found 
that programming with the Logo software was significantly more 
effective than with the Basic software. Later on, Au (1992) confirmed 
this finding using problem-solving transfer tests as outcome measures. In 
the same study, the ways in which the Logo programming instruction 
was integrated (process-vs. content-oriented) moderated the overall ef
fect size. Similarly, some evidence from the early studies exists that the 
superior effectiveness of the programming language Logo over Pascal 
and BASIC depended on the instructional approach (see also Lee, 1991). 
Liao and Bright (1991) summarized the primary programming studies 
and confirmed that some programming languages are more effective in 
fostering the transfer of programming skills than others—an observation 
that was also made for modern languages. Specifically, Costa and 
Miranda (2017) meta-analyzed intervention studies of the effectiveness 
of learning programming with the language Alice. The authors identified 
six eligible studies and found an overall, positive, and moderate effect on 
programming performance, d ¼ 0.54, 95% CI [0.34, 0.74]. Costa and 
Miranda concluded that Alice is an effective software to learn pro
gramming, yet they could not explain the variation of the intervention 
effect across studies. Furthermore, Moreno-Le�on and Robles (2016) 
reviewed studies that used the visual programming language Scratch 
mainly in the contexts of game design and storytelling. The authors 
found support for the overall effectiveness of teaching with Scratch for 
improving students’ attitudes toward programming and their program
ming performance; however, given the limited number of actual (quasi-) 
experimental studies, these effects could not be synthesized 
meta-analytically. 

One of the main reasons for the hypothesized superiority of some 
programming languages over others lies in their visual nature which 
may make programming more accessible to students than text-based 
languages and thus more effective (Grover & Pea, 2013). In fact, some 
evidence suggests that additional visualizations, such as concept maps, 
may elevate these effects (Fl�orez et al., 2017). Especially with the 
development of the Scratch and Logo languages, computer science ed
ucators are hoping to teach students programming already in primary 
school and kindergarten. As early as the 1990s, customizing program
ming tools and languages for certain age groups of students, especially 
for younger students, is considered an integral part of developing pro
gramming instruction (Clements & Sarama, 1997). 

Overall, what this brief review of the extant literature indicates is 
that programming interventions may be differentially effective across 
different programming languages, favoring visualization-based instruc
tion and visual languages. 

Collaboration. Another, substantial set of intervention studies 
focused on the effects of learning programming collaboratively, for 
instance, by pair programming. Lou et al. (2001) meta-analyzed the 
overall effects of learning with technology collaboratively in comparison 
to individual learning. The authors identified weak yet significant and 
positive effects on individual and group performance (d ¼ 0.15–0.31). 
Later, Umapathy and Ritzhaupt (2017) reviewed 28 effect sizes reported 
in 18 primary studies and found moderate to strong effects of pair 
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programming on performance in programming exams and assignments 
(g ¼ 0.41–0.64)—these effects varied significantly across studies. Brown 
and Wilson (2018) consequently encouraged lecturers of computer 
programming to consider collaboration a key element in their instruc
tion. Peer support and collaborative problem solving seem to be espe
cially effective in stimulating computational thinking as they allow 
students to resolve immediate inquiries more rapidly than working 
individually (Fl�orez et al., 2017). Although this evidence base largely 
supports the effectiveness of collaborative practices, some evidence 
suggests that the effects may between domains, gender, and the 
composition of the samples (Springer, Stanne, & Donovan, 1999). 

Game design and physicality. Trying to make programming more 
accessible to younger students, researchers and computer science edu
cators have contextualized programming instruction in the design of 
games and the use of robots (Lee et al., 2014). Behind this contextuali
zation lies the expectation that both game design and robotics will not 
only facilitate the understanding of computational concepts more than 
alternative approaches but will engage students more effectively in 
collaboration (Batista et al., 2016). In Lee’s (1990) early review, simu
lation- and game-based interventions were indeed most beneficial to 
higher-grade students’ learning of computer programming. Concerning 
the interventions involving robotics (e.g., Lego Mindstorms®), Lito 
(2017) meta-analyzed the available effect sizes and found a strong 
positive and statistically significant effect size, d ¼ 0.70, 95% CI [0.28, 
1.11], k ¼ 12. One may argue that both designing games and pro
gramming robots are especially effective for teaching and learning 
programming, because they shift the focus from creating the code to the 
applications and the ‘making’ of creative products (Kafai & Burke, 
2013). Moreover, the code students develop can be tested directly, and 
immanent feedback is accessible by observing, for instance, the move
ments of a programmed robot. Liu, Schunn, Flot, and Shoop (2013) 
supported the argument for involving physicality in programming in
terventions and provided some empirical evidence that physical pro
gramming environments may impact positively students’ algorithmic 
thinking. 

Creating games through programming may not only increase stu
dents’ motivation to engage in programming and acquire the required 
technical skills but also create opportunities for collaborative learning 
experiences (Kafai & Burke, 2015). These approaches, however, still 
have to deliver on their promises by providing a sufficiently large body 
of evidence for their effectiveness (Fl�orez et al., 2017). The present 
meta-analysis examines some aspects of this evidence base. 

1.3. Framework for the present meta-analysis 

To synthesize the research evidence on the effectiveness of instruc
tional approaches and conditions for the learning of computer 

programming, we drew from Chen et al. (2018) framework of three 
study conditions: (a) the effectiveness of technology interventions per 
se, (b) the effectiveness of features of the learning environments or tools, 
and (c) the effectiveness of instructional approaches. This framework 
was informed by Mayer’s (2015) taxonomy of organizing the research 
evidence surrounding digital game-based learning and was also adopted 
in a recent meta-analysis by Tsai and Tsai (2018). In essence, it repre
sents a way of categorizing primary studies into three conditions in order 
to shed light on the effectiveness of technology-based interventions from 
multiple perspectives rather than from a single perspective. Chen et al. 
(2018) consider this multi-perspective approach to be especially useful 
for organizing and mapping domains and study contexts with a variety 
of research foci and approaches. At the same time, this framework faces 
two challenges: First, given the different study conditions, separate 
meta-analyses must be performed to synthesize the evidence within each 
condition—this may, however, limit the number of studies available and 
ultimately reduce the power to detect small effect sizes. Second, the first 
condition (1) focuses on the effects of technology-based interventions 
per se. While these effects may not have specific and direct implications 
for instruction, they provide references against which the effects derived 
from conditions (2) and (3) could be compared. 

Transferring this framework to the context of computer program
ming instruction, we distinguish between three study conditions: (1) 
Studies that reported the effects of programming instruction per se, which 
allowed us to compare the effects of programming instruction with in
struction outside the programming domain; (2) Studies that reported the 
effects of visualization and physicality; (3) Studies that reported the ef
fects of instructional approaches. Fig. 1 depicts these three conditions and 
the overall framework of this meta-analysis, and Table 1 clarifies the 
study designs underlying these conditions, which will be discussed in 
more detail in the method section of this paper. 

1.4. The present meta-analysis 

The present meta-analysis synthesized the evidence surrounding the 
effectiveness of instructional approaches and conditions for learning 
computer programming and tested some of the claims surrounding the 
effectiveness of certain instructional conditions. The main contribution 
of this study consequently lies in generating knowledge about what may 
or may not work well in computer programming instruction and 
whether new programming tools and ways of instruction can deliver on 
their promises. We synthesized the evidence within the three conditions 
(Fig. 1), addressing the following three research questions (RQs): 

RQ1. To what extent are computer programming interventions 
effective in fostering students’ programming knowledge and skills? 
(Effectiveness of programming interventions per se). 

RQ2. (a) To what extent are interventions focusing on visualization 

Table 1 
Overview of the study conditions (a) to (c).  

Study condition Experimental group Control group Examples 

(a) Effectiveness of 
programming 
interventions per se 

Instruction with computer programming Instruction without any computer 
programming  

� Learning mathematics with Logo vs. learning 
mathematics without programming  

� Problem-solving instruction with programming vs. 
without programming 

(b) Effectiveness of 
visualization or 
physicality 

Instruction with visual (programming) 
tools or physical implementations of code 
(e.g., through robots) 

Instruction without the visual (programming) 
tools or physical implementations of code (e. 
g., through robots)  

� Programming instruction with Java vs. 
programming instruction with Scratch 

� Programming with a text-based language and visu
alizations vs. programming with only the text-based 
language  

� Programming instruction with vs. without robotics 
(e.g., Lego Mindstorms®) 

(c) Effectiveness of 
instructional approaches 

Programming instruction with specific 
instructional approaches 

Programming with conventional instruction  � Pair programming vs. individual programming  
� Programming instruction with Logo and 

metacognitive reflections vs. programming 
instruction with Logo without metacognitive 
reflections  
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effective in fostering students’ programming knowledge and skills? (b) 
To what extent are interventions focusing on physicality effective in 
fostering students’ programming knowledge and skills? (Effectiveness of 
visualization and physicality). 

RQ3. To what extent are the following instructional approaches to 
teaching computer programming effective in fostering students’ pro
gramming knowledge and skills: (a) Blended learning, (b) Collaboration, 
(c) Feedback, (d) Game-based learning, (e) Metacognition, and (f) 
Problem solving? (Effectiveness of instructional approaches). 

Besides synthesizing the effect sizes within these conditions, we also 
quantify their variation within and between studies and examine which 
study, sample, and publication features may explain this variation 
(Moderator analyses). To our best knowledge, this meta-analysis is the 
first to quantify the effectiveness of a broad range of intervention pro
grams and to examine possible moderation effects after the publication 
of Lee’s (1990) meta-analysis. Examining the intervention effects across 
the three conditions through separate meta-analyses provides informa
tion about the malleability of programming knowledge and skills from 
multiple perspectives and maps the field of programming instruction by 
providing some references against which researchers can evaluate their 
instructional interventions. 

2. Method 

We based this set of meta-analyses on a systematic review of the 
primary literature and followed certain steps to identify and extract the 
relevant information from the primary studies (Card, 2012). These steps 
included an extensive literature search, the screening of potential pub
lications, and the extraction and coding of relevant information reported 
in eligible publications. Finally, we performed statistical analyses to 
synthesize the evidence surrounding the effectiveness of programming 
instruction. 

2.1. Literature search 

We extracted the literature relevant to the effectiveness of pro
gramming interventions from multiple sources (see Fig. 2): (a) Main 
databases in the field (ACM Digital Library, IEEE Xplore Digital Library, 
ERIC, PsycINFO, and Learn Tech Library) and supplementary databases 
(ProQuest Dissertations and Theses Database, Google Scholar,1 and 
ResearchGate); (b) Academic journals (e.g., Computers & Education, 
Journal of Educational Computing Research); (c) Reference lists of 
previous meta-analyses and review articles (e.g., Liao & Bright, 1991; 
Grover & Pea, 2013; for a detailed reference list, please refer to Sup
plementary Material S2); (d) Vitae of scholars who have published 
studies or reviews in the field of computer science education with a focus 
on programming (e.g., Douglas Clements); and (e) Inquiries concerning 
unpublished studies via email. Our search included publications that 
were published between January 1, 1965 and January 31, 2017. We 
used the following search terms: (Programming OR coding OR code OR 
Scratch* OR Logo* OR Mindstorm* OR computing OR computational 
thinking) AND (teach* OR learn* OR educat* OR student* OR inter
vention OR training) AND Computer* AND (compar* OR control group* 
or experimental group* OR treatment). This set of search terms was 
comprised of four key elements: The first represented the context of 
computer programming and included some alternative terms used in the 
extant literature, such as coding or computational thinking. To capture 
studies that may not have used one of these terms in their titles, ab
stracts, or keyword lists, we further added the names of prominent 

computer programming languages, such as Logo and Scratch—this 
strategy was recommended by Scherer, Siddiq, and S�anchez Viveros 
(2019) in their recent meta-analysis. The former was especially impor
tant for identifying studies that were conducted in the 1980s and 1990s. 
The second set of terms defined the context and type of studies and was 
used to identify interventions that focused on fostering computer pro
gramming skills. The third search term defined the technology used to 
foster programming. Finally, the fourth set of search terms specified the 
design of the studies, that is, an experimental or quasi-experimental 
design that included a control and a treatment group. Overall, the four 
categories of search terms essentially defined the key constructs, the 
educational context, technology, and the design of the primary studies. 
These categories are considered essential in meta-analyses of 
technology-based interventions (e.g., Bernard, Borokhovski, Schmid, 
Tamim, & Abrami, 2014; Chauhan, 2017). In case Boolean search 
mechanisms were not available, we had to modify these groups of search 
terms. Supplementary Material S2 contains the full list of searches in the 
databases, including the details about necessary adaptations. The search 
for relevant literature yielded 5193 publications which were submitted 
to further screening (see Fig. 2). 

2.2. Screening and eligibility criteria 

After removing duplicates, we screened the titles and abstracts of 
708 publications for (a) their relevance for examining the effectiveness 
of interventions of computer programming; (b) the presence of an 
intervention; (c) their quantitative nature; (d) English as their language 
of reporting (see Fig. 2). This initial screening resulted in 440 publica
tions, which were further submitted to the screening of full texts. 

One of the key criteria we applied to screen publications referred to 
the design of the primary studies—we only included studies which 
contained at least one control group and which followed either an 
experimental or a quasi-experimental design (i.e., posttest-only or 
pretest-posttest designs). Hence, we excluded pre-experimental designs 
which did not include any control groups. Besides, studies were 
excluded if (a) full texts or secondary sources containing sufficient in
formation about the interventions were not available; (b) the results of 
the interventions were not reported sufficiently; (c) outcome measures 

Table 2 
Instructional approaches to fostering programming skills.  

Instructional 
approach 

Example intervention(s) Example reference(s) 

Blended 
learning 

Blended learning compared to 
face-to-face instruction of 
computer programming 

Grover, Pea, and Cooper 
(2015); Olelewe and 
Agomuo (2016) 

Collaboration Teaching programming 
collaboratively vs. individually 

Jehng and Chan (1998); Lai 
& Xin (2011) 

Feedback Continuous feedback on 
students’ programming 
performance, feedback in 
structured teaching 
environments 

Chao (1999); Johnson and 
Kane (1992) 

Game-based 
learning 

Game-based instruction of 
object-oriented programming, 
game development in Scratch 

Cetin (2016); Rodríguez 
Corral, Civit Balcells, 
Morgado Est�evez, Jim�enez 
Moreno, and Ferreiro Ramos 
(2014) 

Metacognition Reflecting on problem-solving 
approaches, fostering 
metacognitive strategies 

Lehrer, Lee, and Jeong 
(1999); Volet and Lund 
(1994) 

Problem solving Discovery learning vs. teacher- 
directed learning, teaching 
specific problem-solving 
methods and strategies 

Suomala and Alajaaski 
(2002); Uysal (2014) 

Others Unidirectional vs. reciprocal 
teaching 

Liu et al. (2013); Shadiev 
et al. (2014) 

Note. Please find a more detailed description of the instructional approaches in 
the Supplementary Material S1. 

1 Given the limited options Google Scholar provides to conduct a systematic 
literature search based on standardized search terms (Atkinson & Cipriani, 
2018) and the hard-to-manage number of search results (>1.7 million), we 
extracted only the first 100 entries (see Haddaway, Collins, Coughlin, & Kirk, 
2015) and screened them. 
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were not based on performance assessments of programming skills; (d) 
interventions were conducted outside of educational contexts in which 
students received an instruction (e.g., studies in which students learned 
computer programming autodidactically without any teaching stim
ulus); (e) clinical or special needs samples were included; (f) control and 
treatment groups differed in their grade levels (see Fig. 2). We double- 

screened 20% of all eligible full texts to ensure the reliability of our 
inclusion/exclusion criteria. The resultant interrater agreement was 
high, weighted κ ¼ 0.97. Any disagreement was resolved by discussing 
and reviewing specific cases. Overall, the screening of full texts yielded 
139 eligible studies that provided 375 effect sizes. Supplementary Ma
terial S1 contains the full set of effect sizes; Supplementary Material S2 

Fig. 2. Flow diagram describing the literature search and the selection of eligible training studies (adapted from the PRISMA Statement; Moher, Liberati, Tetzlaff, 
Altman, & The PRISMA Group, 2009). 
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contains the corresponding reference list. 

2.3. Effect size measures 

Effect sizes were extracted directly from the primary studies or 
calculated based on the reported statistics. For pretest-posttest designs 
with a treatment group (T) and a control group (C), we calculated 
Hedges’ g from the standardized mean difference ES as follows (Lipsey & 
Wilson, 2001): 

ES¼
ðXT;Post � XT;PreÞ � ðXC;Post � XC;PreÞ

SDPooled 

XT;Pre and XT;Post represent the pretest and posttest mean scores of the 
treatment, and XC;Pre and XC;Post of the control group, respectively. SDPooled 

represents the pooled standard deviation of the pretest scores, which is 
calculated as follows (Morris, 2008; Schmidt & Hunter, 2014): 

SDPooled;Pre¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNT � 1ÞSD2
T;Pre þ ðNC � 1ÞSD2

C;Pre

NT þ NC � 2

s

NT and NC represent the sample sizes of the treatment and control 
group, and SD2

T;Pre and SD2
C;Pre their pretest score variances. We then 

transformed the effect size ES into Hedges’ g (with df ¼ NT þ NC � 2): 

g¼
�

1 �
3

4df � 1

�

ES 

The corresponding variance vg and the standard error SEg were then 
calculated as follows: 

vg¼

�

1 �
3

4df � 1

�2 �NT þ NC

NT NC
þ

ES2

2ðNT þ NCÞ

�

SEg¼
ffiffiffiffiffivg
p

For posttest-only designs, we applied the same calculations, yet 
without the pretest scores and their standard deviations. In the cases 
where the authors of the primary studies reported only the results of 
statistical tests of mean differences (e.g., t- or F-tests), we used the re
ported statistics to calculate the effect size ES (for more details on these 
calculations, please refer to Lipsey & Wilson, 2001). We refrained from 
correcting the resulting effect sizes for the unreliability of the outcome 
measures for two reasons: (a) Most studies did not provide information 
on the reliability of the outcome measures; (b) The psychometric liter
ature does not draw a clear picture about the effects unreliability cor
rections may have on the overall effect sizes and their variance 
components—in fact, the necessity to correct for unreliability has been 
discussed controversially (Cheung, 2015; Schmidt & Hunter, 2014). 

2.4. Coding of studies 

To identify the information that could be gained from the primary 
studies, examine possible moderation effects, and ultimately classify 
studies into three main conditions, we coded all study features as either 
categorical or continuous variables. These variables served at the level 
of effect sizes, studies, or both. This selection of variables was based on 
the findings from existing reviews, meta-analyses, and interventions 
which identified them as moderators or sources of differential effec
tiveness (e.g., Liao, 2000; Liao & Bright, 1991; Shute et al., 2017; 
Umapathy & Ritzhaupt, 2017). These variables further describe the 
contexts or conditions under which programming interventions may or 
may not succeed (Grover & Pea, 2013). To ensure the reliability of the 
coding, about 25% of the full texts were double-coded; the resulting 
agreement was 94%, and disagreements were resolved during a dis
cussion session until consensus had been reached. Supplementary Ma
terial S1 contains all coded variables. 

Classification of studies (Study conditions). Given the diversity of 

effects examined in the primary studies, we classified the studies ac
cording to the type of effects they allowed us to investigate. The resul
tant variable “Classification” was informed by the framework of 
intervention studies proposed by Chen et al. (2018). More concisely, 
primary studies were classified into one of the following three condi
tions (see also Table 1):  

(1) Studies that reported the effectiveness of programming instruction per 
se (m ¼ 12, k ¼ 14): These studies included at least one treatment 
group that was exposed to programming instruction and at least 
one control group that engaged in instruction other than pro
gramming. Examples of interventions are: Programming in
struction with Lego Mindstorms® (experimental group) vs. no 
programming at all (control group; e.g., Milner, 1973; Nugent, 
Barker, Grandgenett, & Adamchuk, 2010); programming in
struction to solve mathematical problems (experimental group) 
vs. instruction to solve mathematical problems without the 
involvement of programming (control group; e.g., Oprea, 1984; 
Psycharis & Kallia, 2017).  

(2) Studies that reported the effectiveness of visualization (m ¼ 20, k ¼
46) or physicality (m ¼ 7, k ¼ 27): These studies examined the 
effectiveness of visual programming tools or tools that involve 
physicality, that is, students can observe the result of their pro
gramming activities via the movements of physical objects. Ex
amples of interventions are: Visualizing programming languages 
(experimental group) vs. representation of programming lan
guages as only text (control group; e.g., Siozou, Tselios, & Komis, 
2008); Programming instruction with visual programming lan
guage A (experimental group) vs. programming instruction with 
visual and text-based language B (control group; e.g., Cetin, 
2016; Daly, 2013); Programming involving robotics (experi
mental group) vs. programming without robotics (e.g., Huang, 
Yang, & Cheng, 2013; Rodríguez Corral, Civit, Perez-Pe~na, & 
Molina, 2016).  

(3) Studies that reported the effectiveness of instructional approaches (m 
¼ 88, k ¼ 263): These studies examined the effects of instruc
tional practices that did not involve the modification of the pro
gramming tools—control and treatment groups differed in their 
instruction, yet not the programming languages students used. 
Examples of interventions are: Pair programming (experimental 
group) vs. individual programming (control group; e.g., Altintas, 
Gunes, & Sayan, 2016); discovery learning or problem-solving 
instruction (experimental group) vs. teacher-directed instruc
tion (control group; e.g., Carney, 2000; Yang, Hwang, Yang, & 
Hwang, 2015). During the systematic review, the existing body of 
instructional approaches was extracted and classified into the 
following categories: (a) Blended learning, (b) Collaboration, (c) 
Feedback, (d) Game-based learning, (e) Metacognition, (f) 
Problem solving, (g) Others. Although these approaches are 
well-aligned with the extant literature reviewing programming 
instruction (e.g., Hsu et al., 2018), this list is by no means 
exhaustive. In fact, other approaches may play an important role 
for computer science educators, such as storytelling, scaffolding, 
or critical computational literacy instruction (Hsu et al., 2018); 
however, the primary studies we extracted from the literature 
databases only allowed us to examine and synthesize the effec
tiveness of the beforementioned instructional approaches. 

The detailed list of studies including their classification and a 
description of the study effects can be found in the Supplementary 
Material S1 (variable “Classification”). 

Outcome variables. As noted earlier, we referred to a broad 
conceptualization of programming skills in this meta-analysis, allowing 
both knowledge and skill domains as outcome variables. To further 
differentiate between different dimensions of programming skills—and 
therefore perhaps find evidence for or against the differential 
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effectiveness of programming interventions—we coded the outcome 
variables as either ‘programming knowledge’ or ‘programming skills’. 
The former comprised procedural and conceptual knowledge; the latter 
comprised the skills to create, evaluate, and refine code as well as 
debugging and engaging in computational practices in general. Several 
measures of programming knowledge and skills were used—these 
measures comprised students’ performance on knowledge tests (e.g., 
Logo Knowledge Test; see Lehrer, Lee, & Jong, 1999) or computational 
thinking tests (e.g., Jenkins, 2015), next to their course performance (e. 
g., measured by course grades or performance scores of programming 
assignments; Barak, Harward, Kocur, & Lerman, 2007) and exam scores 
(e.g., Shyr, 2010). We note that the computational thinking tests 
assessed mainly skills rather than knowledge; this skillset comprised the 
creation, modification, or application of computer code—these tests 
consequently fell into the category of skills tests. Besides, some authors 
used process and product data to describe and evaluate students’ pro
gramming performance (e.g., by evaluating code, Liu et al., 2013; by 
evaluating indicators of programming difficulty, Mason & Cooper, 
2013). We notice that all outcome measures of programming knowledge 
and skills were performance-based and did not include any self-report 
measures. Students’ performance was indicated by test scores, grades, 
or scores that describe the quality of the programming code. Overall, the 
two outcome categories programming knowledge and skills may include 
overlapping competences; however, it was not possible to provide a 
greater level of granularity due to the limited reporting of the more 
specific sub-competences measured by the tests or exams. 

Instructional approaches. Exploring the studies that reported the 
effectiveness of dominant instructional approaches (Fl�orez et al., 2017; 
Hsu et al., 2018), we found that the intervention programs focused on 
blended learning, the provision of feedback, learning programming 
through computer games, fostering metacognition, collaborative activ
ities, problem solving instruction, and others. Table 2 gives an account 
of these instructional approaches and contains sample references; Sup
plementary Material S1 contains more detailed descriptions of these 
approaches for each study. We note that the category “Collaboration” 
contains primary studies that compared an intervention group in which 
students learned programming collaboratively with a control group in 
which students worked individually. This category also contained 
studies that examined the effectiveness of so-called “pair programming”. 

Programming tools. We coded the programming tools used in the 
interventions as ‘visual’ (e.g., Scratch, Alice), ‘text-based’ (e.g., C, Java), 
or a ‘mixture’ of both. Given the popularity of Lego Mindstorms®, Logo, 
and Scratch in recent years (Hsu et al., 2018), we further identified more 
specifically whether or not these three tools were used. 

Study features. The design of the primary studies was coded as 
either a ‘pretest-posttest control group design’ or a ‘posttest-only 
design’. Given that some studies contained multiple measures and 
samples, it was possible that multiple designs occurred within one study. 
For instance, if the authors of a study administered a programming skills 
test before and after the intervention and a programming knowledge test 
only after the intervention, the study contained both designs—that is, a 
pretest-posttest design for the former and a posttest design for the latter. 
Hence, the study design was primarily a variable at the level of effect 
sizes. Next to the study design, we also coded the randomization (i.e., 
‘randomized’, ‘not randomized’) and matching (i.e., ‘matched’, ‘not 
matched’) of the experimental groups, the collaboration among students 
during the intervention (i.e., ‘collaboration’, ‘no collaboration’), the 
study context (i.e., ‘regular lessons’, ‘extracurricular activity’), and the 
standardization of the outcome measures (i.e., ‘standardized’, ‘unstan
dardized’). Finally, the intervention length was coded as the time spent 
on the intervention in hours. The selection of these study features was 
based on the previous meta-analyses, including that conducted by 
Scherer et al. (2019) on the transfer effects of computer programming. 

Sample features. Sample features comprised the educational level 
the intervention was targeted at (i.e., ‘primary’, ‘secondary’, or ‘tertiary’ 
education), the continent the study sample originated from (i.e., ‘Asia’, 

‘Europe’, ‘North America’, or ‘Others’; the latter included Australia and 
African countries and occurred seldomly), the average age of students in 
years, and the proportion of female students in the primary studies. 

Publication features. We established publication status as another, 
possible moderating variable and based the definition of “grey litera
ture” on Adams, Smart, and Huff’s (2017) framework. In this frame
work, grey literature included dissertations, conference proceedings, 
working papers, book chapters, technical reports, and other references 
that have not been published in scholarly journals after peer-review (see 
also Schmucker et al., 2017). Publication status was thus coded as ‘grey’ 
or ‘published’. Despite the efforts taken (e.g., contacting the authors via 
informal platforms, such as ResearchGate or the mailing lists of com
puter science education societies), unpublished studies could not be 
retrieved. Next to the status of publication, we kept track of the year of 
publication. 

2.5. Statistical analyses 

The meta-analytic data within the three study conditions have a 
nested structure, because many studies reported multiple effect sizes. 
This nesting of effect sizes in studies represents a violation of the inde
pendence assumption in classical meta-analysis (Borenstein, Hedges, 
Higgins, & Rothstein, 2009). As a consequence, we took an approach 
that directly accounted for the dependencies between effect sizes, 
namely three-level random-effects meta-analysis (Cheung, 2014). In 
three-level random-effects meta-analysis, the variation of effect sizes 
between studies (level 3, variance σ2

3) and their variation within studies 
(level 2, variance σ2

2) are quantified in addition to the sampling vari
ability (level 1). For a given data set of primary studies exhibiting a 
nested structure, these variance components can be estimated and tested 
for their deviation from zero by means of model comparisons (i.e., 
comparing a model with freely estimated variances with a model con
straining these variances to zero). Cheung (2015) suggested using the 
likelihood-ratio test to conduct such model comparisons (see Supple
mentary Material S3–S8). Nevertheless, as the testing of significant 
within- and between-study variances is against the boundary of zero, the 
confidence intervals of the variances may contain zero, and the 
likelihood-ratio tests may indicate only a marginal difference in model 
fit (Cheung, 2015). As a consequence, several authors argued that the 
decision for a baseline model with random effects should not only be 
based on the significance tests of variances and heterogeneity tests only, 
but relies mainly on the substantive assumptions on whether the effect 
sizes may or may not vary within or between studies (Cheung, 2015; 
Viechtbauer, 2005). Acknowledging the limitations of the statistical 
tests and considering that the meta-analytic data are hierarchical, we 
chose the three-level random-effects model as the baseline model. 

For the three study conditions, we performed separate meta-analyses 
to obtain the aggregated effect sizes specific to these conditions (see also 
Chen et al., 2018). More specifically, to ensure that studies reporting the 
same type of effects within each condition are synthesized (and thus a 
validity argument for the overall effect sizes can be crafted), we per
formed one meta-analysis for study condition 1, two meta-analyses for 
study condition 2 (i.e., for primary studies focusing on visualization or 
physicality), and six meta-analyses for study condition 3 (i.e., one for 
each instructional approach). 

To examine the extent to which study, sample, and publication fea
tures may explain variation within or between studies, we extended the 
meta-analytic baseline models to three-level mixed-effects models 
(Cheung, 2015). Categorical moderators with more than two categories 
were dummy-coded, and moderators without any variation across effect 
sizes or only one effect size within a category were not considered in 
these analyses. Continuous moderators were z-transformed or, in the 
case of proportions, arcsine-transformed. 

We specified all models in the R package ‘metafor’ using restricted 
maximum likelihood estimation (Viechtbauer, 2017), and variance 
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explanations were obtained from the reduction of level-2 and level-3 
variances (Cheng, Cheung, & Wang, 2018). Please find the corre
sponding R code and output in the Supplementary Material S3–S8. 

2.6. Publication bias, influential effect sizes, and sensitivity analyses 

To determine the degree of publication bias present in the meta- 
analytic data sets in each study condition, we conducted several ana
lyses: First, we performed trim-and-fill analyses and examined the fun
nel plot of effect sizes to identify a possible asymmetry that might be due 
to publication bias (Duval & Tweedie, 2000). These analyses provided 
an overall intervention effect size in each condition adjusted for publi
cation bias and the number of missing studies to achieve symmetry in 
the funnel plot. We further tested the asymmetry using Egger’s linear 
regression test (Egger, Smith, Schneider, & Minder, 1997). Second, we 
estimated the fail-safe N based on Rosenberg’s procedure (Borenstein 
et al., 2009). Third, we examined the p-curve underlying the all inter
vention effects on computer programming in the data set (Simonsohn, 
Nelson, & Simmons, 2014). If the p-curve is right-skewed, the primary 
studies have evidential value and there is no evidence for p-hacking. We 
used the ‘P-curve Online App’ to obtain the p-curve (Simonsohn, Nelson, 
& Simmons, 2017). 

Besides the analysis of publication bias, we identified influential 
effect sizes using Viechtbauer and Cheung’s (2010) diagnostics using the 
R package ‘metafor’. An effect size was considered influential if the 
leave-one-out diagnostics exceeded the common thresholds (for more 
details on these thresholds, please refer to Viechtbauer, 2017). Please 
find the corresponding diagnostic plots in the Supplementary Material 
S3, S5, and S7. If, indeed, influential effect sizes are detected, re
searchers have several options to handle them—either delete or keep 
them. Such decisions, however, are to be supplemented by a review of 
the study, sample, and publication features, which may or may not 
indicate poor study quality. In fact, if an effect size is identified as 
influential and the study quality is poor (e.g., no randomization, 
posttest-only design, small sample sizes, no information about the reli
ability of measures; Valentine, 2019), researchers may well exclude it 
from the meta-analytic data. In the present study, we followed this 
procedure (i.e., examining the features of the study that exhibits influ
ential effect sizes). If effect sizes were indeed excluded, we also studied 
the effects of this exclusion on the meta-analytic model parameters. 
These effects are reported as part of the sensitivity analyses. 

3. Results 

3.1. Description of studies 

The full sample comprised of 139 primary studies yielding 375 effect 
sizes from 26,864 students (control groups: NC ¼ 13,090, treatment 
groups: NT ¼ 13,774). Most studies followed a posttest-only design 
(74.1%), included active control groups (92.8%) that were not matched 
with the treatment group (77.7%), and that implemented the pro
gramming intervention as part of regular school lessons (83.5%). About 
half of the studies reported a randomization of the experimental groups 
(49.6%). The study samples mainly included college and university 
students (72.3%), whose age ranged between 7 and 27 years, and the 
average proportion of female students was 46.0% (SD ¼ 14.7%, Mdn ¼
50.0%). Interventions lasted between one and 105 h (M ¼ 21.4, SD ¼
18.5, Mdn ¼ 20 h). Supplementary Material S1 contains the raw data 
underlying this description. 

3.2. P-curve and influential effect sizes 

The p-curve was right-skewed and suggested that the pool of effect 
sizes extracted from the primary studies had evidential value (see 
Fig. 3). We identified one influential effect size in study condition 1, one 
in study condition 2 (physicality), and six influential effect sizes in study 

condition 3 (collaboration, feedback, metacognition, and others), each 
of which were flagged by student residuals, Cook’s distance, and other 
leave-one-out deletion measures (see Supplementary Material S3, S5, 
and S7). These effect sizes were large and positive and ranged between g 
¼ 1.74 and g ¼ 4.08. After reviewing the study, sample, and publication 
features underlying these effect sizes, we decided to remove three of 
them. Please find the detailed reasoning for this decision in the Sup
plementary Material S2. 

3.3. Effectiveness of programming interventions per Se (RQ1) 

Baseline model. To obtain an overall effect size describing the 
effectiveness of computer programming intervention per se, we estab
lished a baseline model that accounts for the variation of effect sizes 
within (level 2) and between studies (level 3). This three-level random- 
effects model resulted in an overall effect size of g ¼ 0.814 (95% CI 
[0.420, 1.207]), a significant variance σ2

3 (see Table 3), and provided 
evidence for the heterogeneity of effects (Q [12] ¼ 59.8, p < .001; I2

2 ¼

0.0%, I2
3 ¼ 93.7%). These indices suggest substantial variation of effect 

sizes between rather than within studies, given that only two studies 
provided multiple effect sizes. The profile plot showed a maximum at the 
estimate bσ2

3 and a decrease on log-likelihood values when moving 
further away from it (see Supplementary Material S4). The between- 
study variance can therefore be identified. Although the within-study 
variance was small, and its 95% confidence interval contained zero, 
we still allowed for its estimation due to the issues associated with 
testing this variance against its boundary (Cheung, 2015). 

Moderator analysis. Due to the small number of effect sizes and 
primary studies in this category, we were not able to conduct meaningful 
moderator analyses—moderator effects would have been underpow
ered, and variances and variance explanations may not have been reli
ably estimated, especially for subgroups of studies containing only one 
or two effect sizes (e.g., Jackson & Turner, 2017; Valentine, Pigott, & 
Rothstein, 2010). Nevertheless, we reported the effect size for all 
moderator categories in the Supplementary Material S4. 

Sensitivity analysis and publication bias. To examine the effect of 
the influential effect size, we estimated the three-level random-effects 
model for the full sample of studies in this condition, that is, the sample 
of primary studies keeping the one influential case (see Supplementary 
Material S3). This model revealed a positive, statistically significant, and 
slightly larger intervention effect, g ¼ 1.047 (95% CI [0.472, 1.622], z ¼

Fig. 3. P-curve of the full sample of effect sizes.  
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3.6, p < .001). The within-study variance was σ2
2 ¼ 0.000 (95% CI 

[0.000, 0.674]), and the between-study variance was σ2
3 ¼ 0.922 (95% 

CI [0.130, 2.874]), indicating larger variation and uncertainty in the 
estimates. The removal of the influential case decreased the overall ef
fect size; yet, the conclusion that a large, positive, and significant effect 
of programming instructions per se exists remained. 

The trim-and-fill analyses indicated that no study was missing on the 
left side of the funnel plot (SE ¼ 2.124), and Egger’s linear regression 
test suggested that the no statistically significant funnel plot asymmetry 
was given (see Supplementary Material S3). In light of the small number 
of effect sizes, the fail-safe N was large (Table 3). 

3.4. Effectiveness of visualization and physicality (RQ2) 

Baseline models. For the sample of primary studies examining the 
effects of visualization, the three-level random-effects models resulted in 
an overall and significant effect size of g ¼ 0.436 (95% CI [0.289, 
0.583]). The within-study variation was small, while the between-study 
variation was substantial (see Table 3). Moreover, significant hetero
geneity of effect sizes was indicated, Q [45] ¼ 93.5, p < .001. For the 
sample of primary studies examining the effects of physicality, the overall 
effect size was large, g ¼ 0.718 (95% CI [0.226, 1.210]). Similar to the 
visualization effects, the within-study variation was negligible but some 
between-study variation existed (see Table 3). However, the effect sizes 
were homogeneous, Q [25] ¼ 28.3, p ¼ .295. 

3.4.1. Moderator analyses2 

Visualization. While the study design and publication features did 
not exhibit significant moderation effects (see Supplementary Material 
S5), some sample features did. Specifically, primary studies involving 
Asian student samples showed higher effect sizes (g ¼ 0.801, 95% CI 
[0.567, 1.005]) than samples comprising students from other continents 
(gs ¼ 0.053–0.348)—the difference was statistically significant (B ¼
0.748, SE ¼ 0.206, p < .001; R2

2 ¼ 0.261, R2
3 ¼ 0.865; QM[3] ¼ 20.7, p <

.001). Moreover, the proportion of female students in the primary 
studies was positively associated with the overall effect size (B ¼ 1.922, 
SE ¼ 0.450, p < .001, with arcsine transformation). Finally, the primary 
studies involving the visual programming Scratch showed larger effect 
sizes (g ¼ 1.014, 95% CI [0.562, 1.466]) than those involving other 
programming languages (g ¼ 0.380, 95% CI [0.248, 0.512])—these ef
fects were statistically significant (B ¼ 0.634, SE ¼ 0.240, p ¼ .008; R2

2 ¼

0.008, R2
3 ¼ 0.525). 

Physicality. The three-level mixed-effects models identified several 
study and sample features as significant moderators (see Supplementary 
Material S5). Similar to the studies focusing on visualization, studies 
comprising Asian samples showed larger effects (g ¼ 1.574, 95% CI 
[1.154, 1.995]) than those comprising other samples (gs ¼
0.216–0.871). This moderation effect was statistically significant (B ¼
1.358, SE ¼ 0.221, p < .001; QM[2] ¼ 46.0, p < .001). Furthermore, the 
effectiveness of physicality as a means to programming instruction was 
significantly smaller for samples enrolled in secondary education (g ¼
0.238, 95% CI [0.115, 0.360]) than for primary (g ¼ 1.439, 95% CI 
[1.083, 1.795]) or tertiary education (g ¼ 1.472, 95% CI [1.130, 1.815]; 
B ¼ � 1.235, SE ¼ 0.178, p < .001; QM[2] ¼ 48.3, p < .001). The average 
age of the student samples was positively associated with the effect sizes 
(B ¼ 0.251, SE ¼ 0.124, p ¼ .043). Finally, short-term interventions were 
more effective than longer interventions, as the negative moderation 
effect of intervention length indicated (B ¼ � 0.245, SE ¼ 0.090, p ¼
.007). 

Sensitivity analyses and publication bias. After excluding one 
influential effect size, the overall intervention effect of interventions 
focusing on physicality decreased, g ¼ 0.478 (95% CI [0.149, 0.808], z 
¼ 2.8, p ¼ .004), and so did the within-study (σ2

2 ¼ 0.000, 95% CI [0.000, 
0.027]) and between-study variances (σ2

3 ¼ 0.129, 95% CI [0.008, 
0.840]). The moderation effects, however, could also be found in the 
reduced sample (see Supplementary Material S6). 

For the visualization interventions, five primary effect sizes were 
missing to achieve symmetry in the funnel plot (SE ¼ 4.413; see Sup
plementary Material S5), reducing the overall effect to g ¼ 0.373 (95% 
CI [0.264, 0.482], z ¼ 6.7, p < .001). Egger’s regression test, however, 
indicated that asymmetry was not significant, and the fail-safe N was 
large (see Table 3). For the physicality interventions, the trim-and-fill 
analyses indicated that no study was missing on the left side of the 
funnel plot (SE ¼ 0.1271), and Egger’s linear regression test suggested 
that the no statistically significant funnel plot asymmetry was given (see 
Supplementary Material S5), and the fail-safe N was large (Table 3). 
Overall, these results suggested that some degree of publication bias 
existed in the visualization condition. 

3.5. Effectiveness of instructional approaches (RQ3) 

3.5.1. Baseline models 
Overall study sample. As noted earlier, we performed separate meta- 

analyses for each of the instructional approaches to ensure the compa
rability of effects reported in the primary studies within these ap
proaches. Nevertheless, to set a reference of instructional effectiveness 
against which the resultant effect sizes for each approach could be 
evaluated, we specified and estimated a baseline model for the entire 
data in this study condition (m ¼ 88, k ¼ 263; see Supplementary Ma
terial S7). The resultant three-level random-effects model yielded an 
overall effect size of g ¼ 0.598 (95% CI [0.494, 0.702], z ¼ 11.29, p <

Table 3 
Results of the baseline models describing the overall intervention effects for 
study conditions 1 and 2.   

Study condition 1 Study condition 2 

Effectiveness of 
Programming 
Instruction Per Se 

Effectiveness of 
Visualization 

Effectiveness of 
Physicality 

Overall effect size 
g  0.814 0.436 0.718 
95% CI [0.420, 1.207] [0.289, 0.583] [0.226, 1.210] 
z-value 4.05 5.81 0.01 
p-value <.001 <.001 .004 
m 11 20 7 
k 13 46 27 
Variance estimates 
Within-study variance 
σ2

2  0.000 0.018 0.000 

95% CI [0.000, 0.543] [0.000, 0.091] [0.000, 0.027] 
Between-study variance 
σ2

3  0.359 0.062 0.392 

95% CI [0.000, 1.306] [0.000, 0.204] [0.119, 1.735] 
Heterogeneity test 
Cochran’s Q 59.78 93.48 65.31 
df 12 45 26 
p-value <.001 <.001 <.001 
Heterogeneity indices 
I22  0.0% 13.8% 0.0% 

I23  86.1% 47.2% 84.9% 

Publication 
bias    

Rosenberg’s 
fail-safe N 

277 955 155 

Egger’s linear regression test 
t-value 0.00 1.93 1.25 
df 11 44 25 
p-value 1.00 .06 .22 

Note. g ¼ Weighted average effect size Hedges’ g, 95% CI ¼ 95% Wald confi
dence interval, m ¼ Number of studies, k ¼ Number of effect sizes, df ¼ degrees 
of freedom, I2

2 ¼ Heterogeneity index for level 2, I2
3 ¼ Heterogeneity index for 

level 3 (see Cheung, 2015). The analysis of publication bias was based on a 
two-level random-effects model. 
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.001) and exhibited within-study and between-study variation (Q [262] 
¼ 1348.91, p < .001; σ2

2 ¼ 0.276, 95% CI [0.203, 0.368]; σ2
3 ¼ 0.072, 

95% CI [0.012, 0.187]; I2
2 ¼ 66.8%, I2

3 ¼ 17.4%). Introducing the type of 
instructional approach as a moderator variable to this model indicated 
that the effect sizes did not differ significantly across approaches, QM(6) 
¼ 2.81, p ¼ .83. Moreover, modeling the instructional approaches as 
another level of analysis (i.e., in a four-level random-effects model) 
showed that the between-approaches variance was negligible (σ2

4 ¼

0.000, 95% CI [0.000, 0.038]), and the information criteria were 
reduced only marginally (three-level model: AIC ¼ 536.8, BIC ¼ 547.5; 
four-level model: AIC ¼ 538.8, BIC ¼ 553.0). Hence, there was no evi
dence supporting the statistically significant differences in effect sizes 
between instructional approaches. We notice that the overall effect size 
across the instructional approaches should not be further interpreted 
substantively, given the different nature of effects and experimental 
conditions across the primary studies. 

Separate meta-analyses for the instructional approaches. Table 4 
shows the results of the separate meta-analyses, that is, the parameters 
of the three-level random-effects models for each of the instructional 
approaches. Supplementary Material S7 and S8 contain the corre
sponding data input and analytic output files. Overall, the average effect 
sizes ranged between g ¼ 0.493 (feedback) and g ¼ 1.023 (blended 
learning) and thus exhibited moderate to large effects. Notably, the 
samples of primary studies and effect sizes varied in their sizes across 
approaches. Specifically, two approaches contained only three (blended 
learning) or four effect sizes (game-based learning); the resultant 
average effect sizes and their variance components should therefore be 
interpreted with caution. However, all other approaches contained be
tween 40 and 78 effect sizes and provided moderate and statistically 
significant effect sizes (see Table 4). These effects varied mainly within 
studies (collaboration, feedback, and problem solving), and in only one 

case substantially between studies (metacognition). Next to the effects of 
these well-defined instructional approaches, seven studies provided 15 
effect sizes indicating the effectiveness of other approaches (category 
“Other”). Synthesizing these effects resulted in a moderate overall effect 
size, g ¼ 0.490 (95% CI [0.028, 0.952]; see Supplementary Material S7 
and S8). However, we neither interpreted nor extended the meta- 
analysis of this category by moderator variables due to the lack of 
comparability of effects within it. 

Moderator analyses.2 In the following, we will summarize the re
sults of the moderator analyses for each instructional approach. These 
analyses, however, excluded the following categories: Blended learning, 
game-based learning, and others. For more details on the moderator 
analyses, we refer readers to the Supplementary Material S7 and S8. 

Collaboration. Variation in the effect sizes for this instructional 
approach could be explained by the following moderators: (a) Test type: 
Primary studies administering standardized tests showed higher effects 
(g ¼ 1.323, 95% CI [0.954, 1.692]) than those administering non- 
standardized tests of programming knowledge or skills (g ¼ 0.438, 
95% CI [0.274, 0.601])—this difference was statistically significant (B 
¼ 0.885, SE ¼ 0.206, p < .001). (b) Educational level: Sample comprising 
students enrolled in primary education showed the smallest and insig
nificant effects with large uncertainty (g ¼ � 0.855, 95% CI [-1.918, 
0.207]), followed by university and college students (g ¼ 0.496, 95% CI 
[0.300, 0.692]). The highest effect sizes were indicated for the samples 
of students in secondary education (g ¼ 1.507, 95% CI [0.875, 2.139]). 
These differences were statistically significant (QM[2] ¼ 0.04, p ¼ .007) 
and explained mainly between-study variation (R2

2 ¼ 0.066, R2
3 ¼

0.461). (c) Type of outcome variable: Primary studies focusing on 

Table 4 
Results of the baseline models describing the overall intervention effects for study condition 3.   

Study condition 3 

Effectiveness of instructional approaches 

Blended learning Collaboration Feedback Game-based learning Metacognition Problem solving 

Overall effect size 
g  1.023 0.560 0.493 0.821 0.658 0.518 
95% CI [0.291, 1.756] [0.353, 0.767] [0.207, 0.780] [-0.126, 1.768] [0.332, 0.983] [0.378, 0.659] 
z-value 2.74 5.30 3.38 1.70 3.95 7.25 
p-value .006 <.001 <.001 .089 <.001 <.001 
m 3 24 10 2 14 27 
k 4 50 78 3 49 63 
Variance estimates 
Within-study variance 
σ2

2  0.039 0.164 0.245 0.591 0.059 0.243 

95% CI [0.000, 2.563] [0.083, 0.329] [0.140, 0.407] [0.005, 13.088] [0.000, 0.245] [0.149, 0.392] 
Between-study variance 
σ2

3  0.346 0.148 0.073 0.000 0.289 0.000 

95% CI [0.000, 7.183] [0.026, 0.395] [0.000, 0.684] [0.000, >10.000] [0.018, 0.969] [0.000, 0.072] 
Heterogeneity test 
Cochran’s Q 21.98 361.89 277.82 9.98 129.17 280.10 
df 3 49 77 2 48 61 
p-value <.001 <.001 <.001 .007 <.001 <.001 
Heterogeneity indices 
I22  8.9% 46.9% 58.1% 85.9% 12.4% 82.5% 

I23  78.6% 42.3% 17.3% 0.0% 61.1% 0.0% 

Publication bias 
Rosenberg’s fail-safe N 43 2649 1046 9 892 1996 
Egger’s linear regression test 
t-value � 2.02 1.74 0.34 0.27 1.68 2.52 
df 2 48 76 1 47 60 
p-value .18 .09 .74 .83 .10 .01 

Note. g ¼Weighted average effect size Hedges’ g, 95% CI ¼ 95% Wald confidence interval, m ¼ Number of studies, k ¼ Number of effect sizes, df ¼ degrees of freedom, 
I2
2 ¼ Heterogeneity index for level 2, I2

3 ¼ Heterogeneity index for level 3 (see Cheung, 2015). The analysis of publication bias was based on a two-level random-effects 
model. 

2 In some instances, the variance explanations (within and between studies) 
could not be estimated reliably due to missing data in the moderator variables. 
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programming knowledge showed a small and insignificant average ef
fect size (g ¼ � 0.036, 95% CI [-0.636, 0.563]), while those focusing on 
programming skills showed a moderate average effect size (g ¼ 0.607, 
95% CI [0.405, 0.808])—this difference was statistically significant (B 
¼ � 0.643, SE ¼ 0.311, p ¼ .039; R2

2 ¼ 0.075, R2
3 ¼ 0.160). (d) Proportion 

of female students: Finally, effect sizes derived from studies with more 
female students tended to be smaller (B ¼ � 1.109, SE ¼ 0.578, p ¼ .055, 
with arcsine transformation). All other study, sample, and publication 
features did not show moderating effects (see Supplementary Material 
S8). 

Feedback. Among all possible moderating variables, only the study 
feature of randomization explained variation in the effect sizes for this 

category (see Supplementary Material S7). More specifically, primary 
studies performing randomization showed smaller average effect sizes 
(g ¼ 0.324, 95% CI [0.143, 0.506]) than those without randomization (g 
¼ 0.999, 95% CI [0.480, 1.518]). This difference was statistically sig
nificant, B ¼ � 0.675, SE ¼ 0281, p ¼ .016. 

Metacognition. The moderator analyses revealed that primary 
studies taking metacognitive instruction as an approach to teaching 
computer programming were more effective when conducted in 
collaborative settings (g ¼ 1.774, 95% CI [0.999, 2.549]; B ¼ 1.355, SE 
¼ 0.430, p ¼ .002) than in settings with individual work (g ¼ 0.419, 95% 
CI [0.090, 0.749]), explaining mainly between-study variance in effect 
sizes (R2

2 ¼ 0.083, R2
3 ¼ 0.661). Please find more details on the moder

ator analyses in the Supplementary Material S7. 
Problem solving. The context in which the programming instruction 

focusing on problem solving was conducted moderated the average ef
fect size in this category (see Supplementary Material S7). More spe
cifically, primary studies conducted in extracurricular settings were 
more effective (g ¼ 0.736, 95% CI [0.479, 0.992]) than those conducted 
in regular lessons (g ¼ 0.431, 95% CI [0.270, 0.591]). This difference 
was statistically significant (B ¼ � 0.305, SE ¼ 0.154, p ¼ .048) and 
explained only within-study variation (R2

2 ¼ 0.094, R2
3 ¼ 0.000). 

Summary. Overall, some of the study, sample, and publication fea
tures moderated the average effect sizes for the instructional ap
proaches. However, these moderation effects were by no means 
systematic, and some of them must be interpreted with caution, given 
the relatively small number of effect sizes in some of the categories. 
Table 5 summarizes the effects for study condition 3 and all other 
conditions. 

Sensitivity analyses and publication bias. For the instructional 
approaches with identified influential effect sizes, we performed sensi
tivity analyses. A detailed description of the specific results for each 
approach is provided in Supplementary Material S8. Overall, the 
exclusion of influential cases reduced the average effects and the cor
responding variance components slightly; the moderation effects largely 
remained. The analyses of publication bias revealed some degree of bias 
in the problem-solving category (significant Egger’s regression test), yet 
no further evidence for the other categories (see Table 4). 

4. Discussion 

4.1. Effectiveness of computer programming interventions in the three 
conditions 

Effectiveness per se. Synthesizing the primary studies of the effec
tiveness of programming interventions per se, we found a large effect for 
the studies that compared programming instruction with instruction 
outside the programming domain (g ¼ 0.814). This effect size serves as a 
reference point for all other effect sizes—presumably, effect sizes in the 
other study conditions may be lower, mainly because there was no 
exposure to programming in the control groups under study condition 
(1) (see also Scherer et al., 2019). Similarly, Tsai and Tsai (2018), as 
they reviewed game-based interventions in the domain of language 
learning, found the largest effects when control groups did not engage in 
game-based education. The remaining two conditions, indeed, showed 
moderate effect sizes for the categories with at least five effect sizes (gs 
¼ 0.494–0.718). 

Although the effectiveness of programming interventions per se does 
not carry information directly relevant to instructional approaches and 
conditions, the finding that the effect size was positive already has 
several implications and contributions to the field of educational tech
nology: First, it shows that programming knowledge and skills can be 
taught and acquired. Together with Brown and Wilson (2018), we argue 
that programmers are “not born but made”—in other words, we agree 
that the knowledge and skills involved in programming are not neces
sarily innate, thus contrasting some beliefs about the nature of 

Table 5 
Summary of the main findings.  

Research Question (RQ) Overall Effect 
Size (g)  

Significant Moderator Effects 

RQ1. Effectiveness of 
programming 
instruction per se 

g ¼ 0.814, 95% 
CI [0.420, 
1.207]   

� Type of outcome variable: Larger 
effects for tests assessing 
programming knowledge 

RQ2a. Effectiveness of 
visualization 

g ¼ 0.436, 95% 
CI [0.289, 
0.583]   

� Programming tool: Larger effects 
for primary studies using Scratch  

� Continent: Larger effects for Asian 
student samples  

� Proportion of female students: 
Larger effects for samples with 
more female students 

RQ2b. Effectiveness of 
physicality 

g ¼ 0.718, 95% 
CI [0.226, 
1.210]   

� Programming tool: Larger effects 
for studies involving Lego 
Mindstorms®  

� Continent: Order of effects, Asian 
samples > European samples >
Samples from other continents  

� Educational level: Smaller effects 
for samples of secondary school 
students  

� Average age: Positive association 
between average age and 
intervention effects  

� Intervention length: Larger effects 
for shorter interventions 

RQ3. Effectiveness of 
instructional 
approaches 

g ¼ 0.520, 95% 
CI [0.437, 
0.603]  

–  

a Blended learning g ¼ 1.023, 95% 
CI [0.291, 
1.756]  

–  

b Collaboration g ¼ 0.560, 95% 
CI [0.351, 
0.767]   

� Type of outcome variable: Smaller 
effects on tests assessing 
programming knowledge  

� Test type: Larger effects for 
standardized tests  

� Educational level: Order of effects, 
Secondary > Tertiary education 
> Primary education  

� Proportion of female students: 
Smaller effects for samples with 
more female students  

c Feedback g ¼ 0.494, 95% 
CI [0.207, 
0.780]   

� Randomization: Smaller effects for 
studies with randomly assigned 
groups  

d Game-based learning g ¼ 0.821, 95% 
CI [-0.126, 
1.768]  

–  

e Metacognition g ¼ 0.658, 95% 
CI [0.332, 
0.983]   

� Collaboration: Larger effects for 
collaborative settings  

f Problem solving g ¼ 0.518, 95% 
CI [0.378, 
0.659]   

� Study context: Larger effects for 
programming instruction as part 
of extracurricular activities  

g Others g ¼ 0.490, 95% 
CI [0.028, 
0.952]  

–  
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programming talent as being innate (Guzdial, 2014). Among other do
mains, learning computer programming is possible, and intervention 
programs are, on average, effective in fostering the acquisition of the 
knowledge and skills needed for the mastery of the art (for a similar 
discussion in other domains, see Macnamara, Hambrick, & Oswald, 
2014). Although the finding that “programming knowledge and skills 
can be taught and acquired” is expected and may not be considered 
ground-breaking, it is still a relevant observation as corresponding effect 
size creates a reference point within the field. More specifically, re
searchers who may want to evaluate the magnitude of their program
ming interventions can use this reference. In this sense, the reporting of 
overall effect sizes contributes to the mapping of the effectiveness of 
programming intervention next to the effectiveness of other, 
technology-based interventions. For instance, Chauhan (2017), who 
meta-analyzed interventions targeted at learning with technology in 
elementary education, found an overall effect of g ¼ 0.55; Young (2017) 
found that learning mathematics with technology is effective for 
fostering mathematical knowledge and skills, g ¼ 0.38. Of course, 
although these meta-analyses contained primary studies focusing on the 
effectiveness of programming instruction, these effect sizes may only 
serve as rough references because these meta-analyses also included 
primary studies with outcome variables outside the programming 
domain. In their meta-analysis of the transfer effects of learning com
puter programming on skills other than programming, Scherer et al. 
(2019) identified a moderate overall effect size, g ¼ 0.47. The effect size 
we obtained from primary studies using programming knowledge and 
skills as outcome variables was substantially higher (g ¼ 0.814), espe
cially because the outcome variables and the intervention content were 
aligned. Comparisons such as these validate the direction and size of the 
intervention effects we identified. 

Second, the positive overall effects on programming knowledge and 
skills extend previous systematic reviews of programming interventions 
which mostly summarized the types of interventions, measures, and 
their characteristics qualitatively (e.g., Lye & Koh, 2014; Moreno-Le�on 
& Robles, 2016; Shute et al., 2017)—of course, with some exceptions (e. 
g., Costa and Miranda, 2017; Umapathy & Ritzhaupt, 2017; Vihavainen 
et al., 2014). The main contribution of the present study therefore lies in 
the quantifying of effect sizes across a broad range of interventions and 
outcome variables. Despite the positive evidence for the effectiveness of 
programming interventions per se, we notice that (a) these effects vary 
within and between primary studies; (b) these effects do not suggest that 
learning computer programming enables students to transfer the ac
quired knowledge and skills to non-programming domains—our 
meta-analysis was only concerned with the near transfer to similar 
programming tasks. 

Visualization and physicality. Concerning the effectiveness of 
programming tools under condition (2), our meta-analysis identified 
moderate effects of visualization (g ¼ 0.436) and large effects for 
physicality (g ¼ 0.718). The hopes associated with the better effective
ness of visual languages seem to be, at least to some extent, fulfilled 
(Fl�orez et al., 2017). Visual programming languages may reduce the 
cognitive load associated with the reading, understanding, and creating 
of code and may therefore be more accessible to students than purely 
text-based languages (Sengupta, Dickes, Voss Farris, Martin, & Wright, 
2015). At the same time, some graphical elements in languages such as 
Scratch may be perceived as distracting and thus draw on students’ in
hibition capabilities (Çakiro�glu and Suiçmez, 2018). The use of visual 
representations of code may also aid the creating of a mental model 
about the coding sequencing and the functioning of the code (Di Lieto 
and Inguaggiato, 2017; Tsai, 2019). As we dug deeper in the 
meta-analytic data, we tested whether the programming language 
Scratch was especially effective in primary studies focusing on visuali
zation. The moderator analyses showed that effect sizes were signifi
cantly higher for studies using Scratch as compared to the languages (e. 
g., Logo). This finding substantiates Moren�o-Leon’s and Robles’ (2016) 
observations of the effectiveness associated with this language. The 

authors proposed several explanations for this effectiveness beyond the 
visual nature of the language, such as the flexibility of Scratch to 
accommodate different types of projects allowing for different interests 
and learning styles or the positive impact on attitudes toward a subject 
or programming which may lead to better learning outcomes. From our 
perspective, the empirical evidence backing these explanations still 
needs to be developed, and the mechanisms behind the effectiveness of 
visualization still need to be understood. We therefore encourage re
searchers to examine the cognitive underpinnings of programming with 
different types of languages and assess students’ capabilities of shifting 
between different types of code representations. 

Concerning the effectiveness of physicality (for instance, in primary 
studies using Lego Mindstorms®), we believe that this tendency may be 
due to the immediate feedback made available to students after pro
gramming (Grover & Pea, 2013; Lee et al., 2014). This feedback is 
manifested in specific movements or reactions the Lego robots show 
after putting the computer code to action. Observing the functioning of a 
computer code for real or virtual objects may also aid students’ moti
vation for engaging in coding (Afari & Khine, 2017; Tsai, 2019). The 
large effects seem promising from an educator’s perspective, because 
learning programming with such experiences may not only be effective 
in terms of fostering students’ knowledge and skills but also their 
motivation and engagement (Hsu et al., 2018). 

Instructional approaches. We found some differences between the 
instructional approaches to fostering computer programming identified 
in our meta-analytic sample—however, these differences were statisti
cally insignificant. On the one hand, this finding might be perceived 
disappointing because educational researchers would want to find evi
dence of what “works best”. On the other hand, this finding might also 
be perceived promising because it shows that there are multiple ways of 
fostering programming knowledge and skills (Brown & Wilson, 2018). 
Nevertheless, some differences surfaced: Blended learning approaches 
showed the largest intervention effects (g ¼ 1.023). This finding may be 
explained by the reasoning that learning management systems, which 
were used in the primary studies that focused on blended learning, can 
offer students executable code examples, programming tutorials, 
educational videos, platforms to share problem solution—in other 
words, a wealth of learning material which may benefit students’ pro
cess of learning computer programming (Fl�orez et al., 2017). Next, the 
effect of game-based interventions was slightly larger than that of others 
(gaming: g ¼ 0.821). Most primary studies focusing on gaming provided 
students with virtual life experiences and opportunities to design games. 
These processes, as Kafai and Burke (2013) noted, shift the focus from 
computer code to applications and their making. This shift may help 
students engage better in computer programming and thus create more 
effective interventions (Batista et al., 2016; Grover & Pea, 2013). We 
notice that the number of effect sizes focusing on blended and 
game-based learning were small, and the evidence presented here must 
be substantiated further. 

Primary studies facilitating metacognitive strategies to help students 
learning computer programming showed a large overall effect (g ¼
0.658), comparable to the general effects identified for metacognitive 
strategy instruction (g ¼ 0.50–0.63; de Boer, Donker, Kostons, & van der 
Werf, 2018). This finding is not too surprising: Learning computer 
programming is considered to be challenging, especially for novices, as 
it requires not only executing or adapting computer code, but also skills 
related to the planning and organizing of code, the monitoring of the 
problem-solving progress and success, self-reflection, and trouble-
shooting—just to name a few (Nurulain Mohd Rum & Zolkepli, 2018; 
Volet & Lund, 1994). These activities seem to be easier for students who 
have acquired metacognitive strategies and awareness (Bernard & 
Bachu, 2015). In this sense, teaching programming through metacog
nition seems effective, and the metacognitive skills acquired during in
struction may ultimately impact students’ problem-solving performance 
and success. 

The effects of collaborative activities (g ¼ 0.560) were comparable to 
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those identified by Umapathy and Ritzhaupt (2017), thus supporting 
that this approach is effective in fostering programming knowledge and 
skills. Nevertheless, we could not confirm an overall superiority of 
collaborative learning over individual learning. Thinking of computer 
programming as a means to engage students in problem-solving pro
cesses, adding a collaborative component to these already demanding 
processes can create even more burdens on students, especially in the 
beginning of the collaborative process where roles, perspective, and 
knowledge are shared (OECD, 2017). Besides, not every programming 
task may be feasible to be administered in collaborative settings—Siddiq 
and Scherer (2017) argued that collaborative tasks in ICT-rich contexts 
should be designed carefully to facilitate meaningful student-student 
interactions. All in all, we argue that collaboration per se is not more 
effective than the individual learning of computer programming. 

Finally, problem solving instruction (g ¼ 0.518) and feedback stra
tegies (g ¼ 0.494) showed moderate effect sizes. Without discussing this 
observation in large detail, we notice that these two instructional ap
proaches have generally been reported to aid the acquisition of knowl
edge and skills across several domains (e.g., Azevedo & Bernard, 1995; 
Dochy, Segers, van den Bossche, & Gijbels, 2003). Reviewing the evi
dence base in our study, we observed that most of the studies conducted 
in the 1980s and 1990s took a problem-solving approach to computer 
programming by providing students with specific steps and sequences of 
actions to solve coding problems. As noted earlier, computer program
ming, as a key element of computational thinking, engages students in 
problem solving—thus, problem solving instruction is an obvious choice 
for fostering programming knowledge and skills. 

4.2. Contextual variables explaining variation in the intervention effects 

Next to the overall effect sizes under conditions (1)–(3), we exam
ined possible moderation effects by study, sample, and publication 
features, such as the type of outcome and contextual variables. The se
lection of a broad range of moderators extends existing meta-analyses on 
the effectiveness of specific programming interventions and tools and 
allows researchers to explore which instructional conditions may be 
more or less effective. Several findings of the moderator analyses are 
worth discussing. 

Measurement of programming knowledge and skills. We exam
ined whether the intervention effect sizes under conditions (1) to (3) 
differed between measures of programming knowledge and skills and 
found significant differences in two instances: We observed larger effects 
of studies assessing programming knowledge in the study condition 1 
and smaller effects for studies taking a collaborative teaching approach 
to programming instruction in the study condition 3. The latter finding 
aligns with the tendency of collaborative instruction to be especially 
effective for skill acquisition in computer-based learning environments 
as compared to knowledge acquisition (Graesser et al., 2018). 
Student-student interactions may be aiding the development of skills but 
may depend on the knowledge students have acquired before engaging 
in a problem-solving process (Siddiq & Scherer, 2017). At the same time, 
knowledge sharing is key to collaboration—this sharing, however, does 
not ensure that all students who collaborate will acquire the shared 
knowledge to the same extent. The finding that no other moderating 
effects occurred was surprising, given the considerable diversity of these 
measures, as noted by Shute et al. (2017) in their review. At the same 
time, the intervention programs seemed to be equally effective in 
fostering both outcome variables—we consider this to be a promising 
result because it shows that both knowledge and skills in the program
ming domain could be fostered to a similar extent. Moreover, the in
clusion of skills beyond knowledge measures in the primary studies 
resonates with Fl�orez et al.’s (2017) plea to focus not only on the pure 
knowledge of and about computer code but the very skills surrounding 
it. The challenge, however, remains to clearly define these skills, espe
cially with respect to taking computational perspectives (Grover & Pea, 
2013; Lye & Koh, 2014). 

Notably, our meta-analysis did not reveal consistent differences in 
effects between standardized than for unstandardized tests. In fact, in 
only one category (study condition 3, collaboration), standardized as
sessments of programming knowledge tended to result in larger effects 
than assessments that were not standardized. To summarize, we neither 
found consistent evidence for the differential effectiveness of program
ming interventions between knowledge and skills not between stan
dardized and non-standardized tests. 

Sample, study, and publication features. Examining the modera
tion effects of study features, we would like to highlight one finding: 
First, there was no evidence for the differences in effects between 
pretest-posttest and posttest-only control group designs—in contrast to 
the general observations noted by Cheung and Slavin (2016). To some 
extent, this finding suggests that the method bias caused by different 
study designs may only be limited in our meta-analysis. Second, we 
observed a tendency of negative moderation effects by the intervention 
length. Longer interventions under condition (2) focusing on physicality 
tended to be less effective than shorter interventions. Although this 
result may be counter-intuitive, it is not unusual in the domain of 
educational technology. For instance, Chauhan (2017) found that in
terventions of elementary students’ learning with technology that 
exceeded 6 months were less effective than short-term interventions. 
Sung, Chang, and Liu (2016) expected the duration of interventions that 
examined the effects of integrating mobile devices on students’ learning 
to be positive—however, the authors did not find any significant 
moderation effect of intervention length in their meta-analysis. The 
negative relation we found in our meta-analysis may have several rea
sons, such as the high value of novelty (i.e., when learning programming 
with a new tool or language) or the higher engagement of students in the 
intervention tasks in the beginning of the interventions (e.g., Cheung & 
Slavin, 2013). Third, some differences between continents surfaced: for 
instance, the largest intervention effects for studies examining visuali
zation or physicality were reported by studies involving Asian student 
samples. Although our meta-analysis cannot provide substantive ex
planations for these differences, we suspect that several factors may 
have contributed to this moderation effect. We believe that the coun
tries’ development of information and communication technology (ITU, 
2017), the openness to these technologies and their advancements 
(OECD, 2013), and the curricular emphasis on skills related to ICT and 
computer programming (UNESCO Institute for Statistics, 2018) may be 
among the possible, explanatory factors. 

Finally, we would like to highlight two more moderation effects: For 
the studies focusing on problem solving instruction, programming as an 
extracurricular activity was more effective than as a part of regular 
lessons. One of the reasons for this difference may lie in the presumably 
enhanced motivation of students enrolling in extracurricular activities, 
posing a selection effect on the effectiveness of the intervention (e.g., 
Durlak, Weissberg, & Pachan, 2010). Although the conclusion that 
extracurricular activities may generally be more effective in fostering 
programming knowledge and skills may be tempting, the primary 
studies did not allow us to estimate long-term effects—such effects could 
clarify the observed differences. 

Studies focusing on metacognition instruction were more effective if 
they engaged students in collaboration rather than having students work 
on programming tasks individually. This observation is not unknown to 
studies in the field of computer programming, and evidence exists 
supporting it (Umapathy & Ritzhaupt, 2017). Bernard and Bachu (2015) 
argue that collaborative settings (e.g., pair programming) allow students 
to explain their thinking, reflect on their strategies, and correct each 
other if needed. The benefits of collaboration lie therefore in the pro
motion of metacognitive strategies and awareness. 

In sum, only few study, sample, and publication features explained 
the variation of effects within and between studies and thus indicated 
only a marginal degree of differential effectiveness. 
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4.3. Limitations and future directions 

The current meta-analysis has some limitations worth noting: First, 
we categorized the primary studies under condition (3) by their 
instructional approaches to computer programming using broad cate
gories. Alternative, more fine-grained categorizations may provide more 
detailed information about the differential effectiveness of these ap
proaches, although the available sample sizes in each category may limit 
the level of granularity. We therefore encourage researchers to explore 
different categorizations. Second, as most studies implemented a 
posttest-only design, adjustments for students’ prior programming skills 
were largely missing. We believe that pretest-posttest intervention de
signs will draw a more accurate picture of the actual intervention effects 
(Shadish, Cook, & Campbell, 2002), and we encourage researchers who 
study the effectiveness of programming interventions to implement such 
rigorous research designs (e.g., Tsai, 2019). Third, the measures of 
programming skills and knowledge were diverse—this diversity may 
have contributed to the between-study variation in the intervention ef
fects. The lack of uniform outcome measures in primary studies is a 
current challenge for effectiveness studies of programming interventions 
(Shute et al., 2017). Fourth, the success of programming interventions 
may depend on factors other than the ones examined through moderator 
analyses. For instance, Tsai (2019) showed that their visual program
ming intervention was more successful for students with low to mod
erate self-efficacy. Consequently, explaining the mechanisms behind the 
effectiveness of certain interventions requires considering such moti
vational and attitudinal factors. 

4.4. Conclusions and implications 

The present meta-analysis set out to examine the empirical evidence 
surrounding the effectiveness of computer programming instruction per 
se (study condition 1), the effectiveness of visualization and physicality 
(study condition 2), and the effectiveness of instructional approaches 
(study condition 3) for fostering students’ programming knowledge and 
skills. Several findings surfaced that inform research in this area: First, 
the strong positive effect size of programming instruction per se was 
expected (g ¼ 0.814) and suggests the trainability of programming 
knowledge and skills. This report of an overall effect size provides a 
reference point against which future interventions and their effect sizes 
could be evaluated (see also Chen et al., 2018; Tsai & Tsai, 2018). 

Second, the meta-analysis of studies focusing on visualization or 
physicality identified positive overall effect sizes (visualization: g ¼
0.436, physicality: g ¼ 0.718) and supported some of the existing claims 
surrounding the effectiveness of modern programming languages such 
as Scratch. Surprisingly, visualization was differentially effective across 
student samples. Hence, we argue that the context of the instruction and 
the change in representation modes of programming languages should 
be considered carefully for the specific groups of students (see also 
S�aez-L�opez, Rom�an-Gonz�alez, & V�azquez-Cano, 2016). Similarly, pro
gramming tools involving physicality showed large effect sizes than 
non-physical ones; once again, although these tendencies may suggest 
that these languages and tools may have delivered on their promises, 
they need to be backed with further empirical evidence obtained from 
carefully designed experimental studies. 

Third, apart from these conclusions that may primarily have a sci
entific merit as they generate knowledge about the overall effectiveness 
of interventions, the subsequent moderator analyses may have more 
practical implications: We did not find evidence for the superiority of 
specific interventions, such as collaborative activities, feedback-based 
instruction, or game-based learning in programming. Hence, the 
claims surrounding their superiority among alternative instructional 
approaches could not be fully substantiated for the present, meta- 
analytic samples. Educators may therefore choose among them 
without losing out on effectiveness yet with considering the suitability 
for the specific group of students they are teaching. At the same time, the 

evidence on the age specificity of some intervention effects supports the 
current attempts to design programming interventions with tools that 
are customized for the different age groups of students. The finding that 
instructional practices did not differ significantly in their effect sizes 
may be a relief to many researchers and educators: First, they may not 
have to restrict their teaching to a specific approach but provide stu
dents with different learning experiences and teaching practices. Sec
ond, they may adapt their instructional approaches to the specific 
circumstances and conditions of the learning environments and students 
without deteriorating the success of the programming instruction. At the 
same time, monitoring continuously what works best for learning pro
gramming should become an integral part of the research agenda in this 
field. Moreover, the fact that key study design features (e.g., randomi
zation, standardized testing) moderated some of the effects emphasizes 
the importance of well-designed experimental studies in order to reduce 
the possible methodological bias in effect sizes (see also Mayer, 2015). 
We therefore encourage researchers to continue systematically investi
gating the effectiveness of various instructional approaches and condi
tions in well-designed experimental studies and to strive for developing 
interventions, tools, and features that make computer programming 
accessible to students at different stages of their education. 
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